HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation

HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation

Abstract

In this work we rigorously analyse assumptions inherent to black-box optimisation hyper-parameter tuning tasks. Our results on the Bayesmark benchmark indicate that heteroscedasticity and non-stationarity pose significant challenges for black-box optimisers. Based on these findings, we propose a Heteroscedastic and Evolutionary Bayesian Optimisation solver (HEBO). HEBO performs non-linear input and output warping, admits exact marginal log-likelihood optimisation and is robust to the values of learned parameters. We demonstrate HEBO's empirical efficacy on the NeurIPS 2020 Black-Box Optimisation challenge, where HEBO placed first. Upon further analysis, we observe that HEBO significantly outperforms existing black-box optimisers on 108 machine learning hyperparameter tuning tasks comprising the Bayesmark benchmark. Our findings indicate that the majority of hyper-parameter tuning tasks exhibit heteroscedasticity and non-stationarity, multi-objective acquisition ensembles with Pareto front solutions improve queried configurations, and robust acquisition maximisers afford empirical advantages relative to their non-robust counterparts. We hope these findings may serve as guiding principles for practitioners of Bayesian optimisation. All code is made available at https://github.com/huawei-noah/HEBO.

Benchmarks

BenchmarkMethodologyMetrics
hyperparameter-optimization-on-bayesmarkTURBO
Mean: 97.951
hyperparameter-optimization-on-bayesmarkHEBO
Mean: 100.117

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation | Papers | HyperAI