Command Palette
Search for a command to run...
Hengshuang Zhao Li Jiang Jiaya Jia Philip Torr Vladlen Koltun

Abstract
Self-attention networks have revolutionized natural language processing and are making impressive strides in image analysis tasks such as image classification and object detection. Inspired by this success, we investigate the application of self-attention networks to 3D point cloud processing. We design self-attention layers for point clouds and use these to construct self-attention networks for tasks such as semantic scene segmentation, object part segmentation, and object classification. Our Point Transformer design improves upon prior work across domains and tasks. For example, on the challenging S3DIS dataset for large-scale semantic scene segmentation, the Point Transformer attains an mIoU of 70.4% on Area 5, outperforming the strongest prior model by 3.3 absolute percentage points and crossing the 70% mIoU threshold for the first time.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| 3d-part-segmentation-on-shapenet-part | PointTransformer | Class Average IoU: 83.7 Instance Average IoU: 86.6 |
| 3d-point-cloud-classification-on-modelnet40 | PointTransformer | Mean Accuracy: 90.6 Overall Accuracy: 93.7 |
| 3d-semantic-segmentation-on-s3dis | PointTransformer | mIoU (6-Fold): 73.5 mIoU (Area-5): 70.4 |
| 3d-semantic-segmentation-on-stpls3d | Point transformer | mIOU: 47.64 |
| point-cloud-segmentation-on-pointcloud-c | PointTransformers | mean Corruption Error (mCE): 1.049 |
| semantic-segmentation-on-s3dis | PointCNN | Mean IoU: 65.4 Number of params: N/A |
| semantic-segmentation-on-s3dis | SPGraph | Mean IoU: 62.1 Number of params: N/A |
| semantic-segmentation-on-s3dis | PointTransformer | Mean IoU: 73.5 Number of params: 7.8M Params (M): 7.8 mAcc: 81.9 oAcc: 90.2 |
| semantic-segmentation-on-s3dis | PointNet | Mean IoU: 47.6 Number of params: N/A |
| semantic-segmentation-on-s3dis | KPConv | Mean IoU: 70.6 Number of params: 14.1M Params (M): 14.1 |
| semantic-segmentation-on-s3dis-area5 | PointNet | Number of params: N/A mIoU: 41.1 |
| semantic-segmentation-on-s3dis-area5 | PointCNN | Number of params: N/A mIoU: 57.3 |
| semantic-segmentation-on-s3dis-area5 | PointTransformer | Number of params: 7.8M mAcc: 76.5 mIoU: 70.4 oAcc: 90.8 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.