HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Video Transformer Network

Daniel Neimark Omri Bar Maya Zohar Dotan Asselmann

Video Transformer Network

Abstract

This paper presents VTN, a transformer-based framework for video recognition. Inspired by recent developments in vision transformers, we ditch the standard approach in video action recognition that relies on 3D ConvNets and introduce a method that classifies actions by attending to the entire video sequence information. Our approach is generic and builds on top of any given 2D spatial network. In terms of wall runtime, it trains $16.1\times$ faster and runs $5.1\times$ faster during inference while maintaining competitive accuracy compared to other state-of-the-art methods. It enables whole video analysis, via a single end-to-end pass, while requiring $1.5\times$ fewer GFLOPs. We report competitive results on Kinetics-400 and present an ablation study of VTN properties and the trade-off between accuracy and inference speed. We hope our approach will serve as a new baseline and start a fresh line of research in the video recognition domain. Code and models are available at: https://github.com/bomri/SlowFast/blob/master/projects/vtn/README.md

Benchmarks

BenchmarkMethodologyMetrics
action-classification-on-kinetics-400ViT-B-VTN+ ImageNet-21K (84.0 [10])
Acc@1: 79.8
action-classification-on-kinetics-400ViT-B-VTN (1 layer, ImageNet pretrain)
Acc@5: 93.4
action-classification-on-kinetics-400ViT-B-VTN+ ImageNet-21K (84.0 [10])
Acc@5: 94.2
action-classification-on-kinetics-400ViT-B-VTN (3 layers, ImageNet pretrain)
Acc@1: 78.6
Acc@5: 93.7
action-classification-on-moments-in-timeVTN
Top 1 Accuracy: 37.4
Top 5 Accuracy: 65.4

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Video Transformer Network | Papers | HyperAI