HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

DEFT: Detection Embeddings for Tracking

Mohamed Chaabane Peter Zhang J. Ross Beveridge Stephen O&#39 Hara

DEFT: Detection Embeddings for Tracking

Abstract

Most modern multiple object tracking (MOT) systems follow the tracking-by-detection paradigm, consisting of a detector followed by a method for associating detections into tracks. There is a long history in tracking of combining motion and appearance features to provide robustness to occlusions and other challenges, but typically this comes with the trade-off of a more complex and slower implementation. Recent successes on popular 2D tracking benchmarks indicate that top-scores can be achieved using a state-of-the-art detector and relatively simple associations relying on single-frame spatial offsets -- notably outperforming contemporary methods that leverage learned appearance features to help re-identify lost tracks. In this paper, we propose an efficient joint detection and tracking model named DEFT, or "Detection Embeddings for Tracking." Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network. An LSTM is also added to capture motion constraints. DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards while having significant advantages in robustness when applied to more challenging tracking data. DEFT raises the bar on the nuScenes monocular 3D tracking challenge, more than doubling the performance of the previous top method. Code is publicly available.

Code Repositories

MedChaabane/DEFT
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
3d-multi-object-tracking-on-nuscenesDEFT
AMOTA: 0.18
multi-object-tracking-on-mot16DEFT
MOTA: 68.03
multi-object-tracking-on-mot17DEFT
MOTA: 66.6
multiple-object-tracking-on-kitti-test-onlineDEFT
HOTA: 74.23
MOTA: 88.95

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
DEFT: Detection Embeddings for Tracking | Papers | HyperAI