HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Hyperbolic Generative Adversarial Network

Diego Lazcano Nicolás Fredes Werner Creixell

Hyperbolic Generative Adversarial Network

Abstract

Recently, Hyperbolic Spaces in the context of Non-Euclidean Deep Learning have gained popularity because of their ability to represent hierarchical data. We propose that it is possible to take advantage of the hierarchical characteristic present in the images by using hyperbolic neural networks in a GAN architecture. In this study, different configurations using fully connected hyperbolic layers in the GAN, CGAN, and WGAN are tested, in what we call the HGAN, HCGAN, and HWGAN, respectively. The results are measured using the Inception Score (IS) and the Fréchet Inception Distance (FID) on the MNIST dataset. Depending on the configuration and space curvature, better results are achieved for each proposed hyperbolic versions than their euclidean counterpart.

Benchmarks

BenchmarkMethodologyMetrics
image-generation-on-mnistHypGAN
FID: 7.87

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Hyperbolic Generative Adversarial Network | Papers | HyperAI