Command Palette
Search for a command to run...
Dual Pointer Network for Fast Extraction of Multiple Relations in a Sentence
Seongsik Park Harksoo Kim

Abstract
Relation extraction is a type of information extraction task that recognizes semantic relationships between entities in a sentence. Many previous studies have focused on extracting only one semantic relation between two entities in a single sentence. However, multiple entities in a sentence are associated through various relations. To address this issue, we propose a relation extraction model based on a dual pointer network with a multi-head attention mechanism. The proposed model finds n-to-1 subject-object relations using a forward object decoder. Then, it finds 1-to-n subject-object relations using a backward subject decoder. Our experiments confirmed that the proposed model outperformed previous models, with an F1-score of 80.8% for the ACE-2005 corpus and an F1-score of 78.3% for the NYT corpus.
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| relation-extraction-on-ace-2005 | Dual Pointer Network(multi-head) | Cross Sentence: No Relation classification F1: 80.8 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.