HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

A Hybrid CNN-BiLSTM Voice Activity Detector

Nicholas Wilkinson Thomas Niesler

A Hybrid CNN-BiLSTM Voice Activity Detector

Abstract

This paper presents a new hybrid architecture for voice activity detection (VAD) incorporating both convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) layers trained in an end-to-end manner. In addition, we focus specifically on optimising the computational efficiency of our architecture in order to deliver robust performance in difficult in-the-wild noise conditions in a severely under-resourced setting. Nested k-fold cross-validation was used to explore the hyperparameter space, and the trade-off between optimal parameters and model size is discussed. The performance effect of a BiLSTM layer compared to a unidirectional LSTM layer was also considered. We compare our systems with three established baselines on the AVA-Speech dataset. We find that significantly smaller models with near optimal parameters perform on par with larger models trained with optimal parameters. BiLSTM layers were shown to improve accuracy over unidirectional layers by $\approx$2% absolute on average. With an area under the curve (AUC) of 0.951, our system outperforms all baselines, including a much larger ResNet system, particularly in difficult noise conditions.

Code Repositories

NickWilkinson37/voxseg
Official
tf
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
activity-detection-on-ava-speechCNN-BiLSTM_small
ROC-AUC: 95.13
activity-detection-on-ava-speechCNN-BiLSTM_best
ROC-AUC: 95.14

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
A Hybrid CNN-BiLSTM Voice Activity Detector | Papers | HyperAI