HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation

Lingtong Kong Chunhua Shen Jie Yang

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation

Abstract

Dense optical flow estimation plays a key role in many robotic vision tasks. In the past few years, with the advent of deep learning, we have witnessed great progress in optical flow estimation. However, current networks often consist of a large number of parameters and require heavy computation costs, largely hindering its application on low power-consumption devices such as mobile phones. In this paper, we tackle this challenge and design a lightweight model for fast and accurate optical flow prediction. Our proposed FastFlowNet follows the widely-used coarse-to-fine paradigm with following innovations. First, a new head enhanced pooling pyramid (HEPP) feature extractor is employed to intensify high-resolution pyramid features while reducing parameters. Second, we introduce a new center dense dilated correlation (CDDC) layer for constructing compact cost volume that can keep large search radius with reduced computation burden. Third, an efficient shuffle block decoder (SBD) is implanted into each pyramid level to accelerate flow estimation with marginal drops in accuracy. Experiments on both synthetic Sintel data and real-world KITTI datasets demonstrate the effectiveness of the proposed approach, which needs only 1/10 computation of comparable networks to achieve on par accuracy. In particular, FastFlowNet only contains 1.37M parameters; and can execute at 90 FPS (with a single GTX 1080Ti) or 5.7 FPS (embedded Jetson TX2 GPU) on a pair of Sintel images of resolution 1024x436.

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
optical-flow-estimation-on-kitti-2012FastFlowNet-ft
Average End-Point Error: 1.8
optical-flow-estimation-on-kitti-2015FastFlowNet-ft
Fl-all: 11.22
optical-flow-estimation-on-kitti-2015-trainFastFlowNet
EPE: 12.24
F1-all: 33.1
optical-flow-estimation-on-sintel-cleanFastFlowNet-ft
Average End-Point Error: 4.89
optical-flow-estimation-on-sintel-finalFastFlowNet-ft
Average End-Point Error: 6.08

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation | Papers | HyperAI