HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

USB: Universal-Scale Object Detection Benchmark

Yosuke Shinya

USB: Universal-Scale Object Detection Benchmark

Abstract

Benchmarks, such as COCO, play a crucial role in object detection. However, existing benchmarks are insufficient in scale variation, and their protocols are inadequate for fair comparison. In this paper, we introduce the Universal-Scale object detection Benchmark (USB). USB has variations in object scales and image domains by incorporating COCO with the recently proposed Waymo Open Dataset and Manga109-s dataset. To enable fair comparison and inclusive research, we propose training and evaluation protocols. They have multiple divisions for training epochs and evaluation image resolutions, like weight classes in sports, and compatibility across training protocols, like the backward compatibility of the Universal Serial Bus. Specifically, we request participants to report results with not only higher protocols (longer training) but also lower protocols (shorter training). Using the proposed benchmark and protocols, we conducted extensive experiments using 15 methods and found weaknesses of existing COCO-biased methods. The code is available at https://github.com/shinya7y/UniverseNet .

Code Repositories

shinya7y/UniverseNet
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
object-detection-on-cocoUniverseNet-20.08 (Res2Net-50, DCN, single-scale)
AP50: 67.5
AP75: 53.0
APL: 61.1
APM: 52.3
APS: 30.1
box mAP: 48.8
object-detection-on-cocoUniverseNet-20.08d (Res2Net-101, DCN, multi-scale)
AP50: 71.6
AP75: 59.9
APL: 67.4
APM: 57.2
APS: 35.8
box mAP: 54.1
object-detection-on-cocoUniverseNet-20.08d (Res2Net-101, DCN, single-scale)
AP50: 70.0
AP75: 55.8
APL: 64.9
APM: 55.3
APS: 31.7
box mAP: 51.3
object-detection-on-coco-minivalUniverseNet-20.08d (Res2Net-101, DCN, single-scale)
AP50: 69.5
AP75: 55.4
APL: 65.8
APM: 55.5
APS: 33.5
box AP: 50.9
object-detection-on-coco-minivalUniverseNet-20.08d (Res2Net-101, DCN, multi-scale)
AP50: 70.8
AP75: 58.9
APL: 68.1
APM: 57.5
APS: 36.9
box AP: 53.5
object-detection-on-coco-minivalUniverseNet-20.08 (Res2Net-50, DCN, single-scale)
AP50: 67.0
AP75: 52.6
APL: 62.7
APM: 52.7
APS: 30.6
box AP: 48.5
object-detection-on-coco-oUniverseNet (R2-101-DCN)
Effective Robustness: 1.86
object-detection-on-coco-oUniverseNet (R2-101-DCN)
Average mAP: 24.8
object-detection-on-manga109-s-15testCascade R-CNN
COCO-style AP: 67.6
object-detection-on-manga109-s-15testUniverseNet-20.08
COCO-style AP: 69.9
object-detection-on-manga109-s-15testATSS (ConvNeXt-T)
COCO-style AP: 67.4
object-detection-on-manga109-s-15testATSS (Swin-T)
COCO-style AP: 66.2
object-detection-on-manga109-s-15testDeformable DETR
COCO-style AP: 64.1
object-detection-on-manga109-s-15testSparse R-CNN
COCO-style AP: 63.1
object-detection-on-manga109-s-15testATSS+SEPC
COCO-style AP: 67.1
object-detection-on-manga109-s-15testATSS+DyHead
COCO-style AP: 67.9
object-detection-on-manga109-s-15testUniverseNet
COCO-style AP: 68.9
object-detection-on-manga109-s-15testDETR
COCO-style AP: 31.2
object-detection-on-manga109-s-15testFaster R-CNN
COCO-style AP: 65.8
object-detection-on-manga109-s-15testGFL
COCO-style AP: 67.3
object-detection-on-manga109-s-15testYOLOX-L
COCO-style AP: 70.2
object-detection-on-manga109-s-15testATSS
COCO-style AP: 66.5
object-detection-on-manga109-s-15testRetinaNet
COCO-style AP: 65.3
object-detection-on-usb-standard-usb-1-0YOLOX-L
mCAP: 49.6
object-detection-on-usb-standard-usb-1-0Cascade R-CNN
mCAP: 48.1
object-detection-on-usb-standard-usb-1-0GFL
mCAP: 47.7
object-detection-on-usb-standard-usb-1-0Sparse R-CNN
mCAP: 44.6
object-detection-on-usb-standard-usb-1-0UniverseNet
mCAP: 51.4
object-detection-on-usb-standard-usb-1-0Faster R-CNN
mCAP: 45.9
object-detection-on-usb-standard-usb-1-0UniverseNet-20.08
mCAP: 52.1
object-detection-on-usb-standard-usb-1-0ATSS
mCAP: 47.1
object-detection-on-usb-standard-usb-1-0ATSS+DyHead
mCAP: 49.4
object-detection-on-usb-standard-usb-1-0ATSS (Swin-T)
mCAP: 49.0
object-detection-on-usb-standard-usb-1-0RetinaNet
mCAP: 44.8
object-detection-on-usb-standard-usb-1-0ATSS (ConvNeXt-T)
mCAP: 50.4
object-detection-on-usb-standard-usb-1-0DETR
mCAP: 23.7
object-detection-on-waymo-2d-detection-all-nsUniverseNet
AP/L2: 67.42
object-detection-on-waymo-2d-detection-all-ns-1DETR
COCO-style AP: 17.8
object-detection-on-waymo-2d-detection-all-ns-1UniverseNet-20.08
COCO-style AP: 39.0
object-detection-on-waymo-2d-detection-all-ns-1YOLOX-L
COCO-style AP: 41.6
object-detection-on-waymo-2d-detection-all-ns-1ATSS+DyHead
COCO-style AP: 37.1
object-detection-on-waymo-2d-detection-all-ns-1GFL
COCO-style AP: 35.7
object-detection-on-waymo-2d-detection-all-ns-1Faster R-CNN
COCO-style AP: 34.5
object-detection-on-waymo-2d-detection-all-ns-1ATSS
COCO-style AP: 35.4
object-detection-on-waymo-2d-detection-all-ns-1UniverseNet
COCO-style AP: 38.6
object-detection-on-waymo-2d-detection-all-ns-1ATSS (Swin-T)
COCO-style AP: 37.2
object-detection-on-waymo-2d-detection-all-ns-1Sparse R-CNN
COCO-style AP: 32.8
object-detection-on-waymo-2d-detection-all-ns-1Cascade R-CNN
COCO-style AP: 36.4
object-detection-on-waymo-2d-detection-all-ns-1Deformable DETR
COCO-style AP: 32.7
object-detection-on-waymo-2d-detection-all-ns-1ATSS (ConvNeXt-T)
COCO-style AP: 38.3
object-detection-on-waymo-2d-detection-all-ns-1ATSS+SEPC
COCO-style AP: 35.0
object-detection-on-waymo-2d-detection-all-ns-1RetinaNet
COCO-style AP: 32.5

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp