Command Palette
Search for a command to run...
Xinlei Chen Saining Xie Kaiming He

Abstract
This paper does not describe a novel method. Instead, it studies a straightforward, incremental, yet must-know baseline given the recent progress in computer vision: self-supervised learning for Vision Transformers (ViT). While the training recipes for standard convolutional networks have been highly mature and robust, the recipes for ViT are yet to be built, especially in the self-supervised scenarios where training becomes more challenging. In this work, we go back to basics and investigate the effects of several fundamental components for training self-supervised ViT. We observe that instability is a major issue that degrades accuracy, and it can be hidden by apparently good results. We reveal that these results are indeed partial failure, and they can be improved when training is made more stable. We benchmark ViT results in MoCo v3 and several other self-supervised frameworks, with ablations in various aspects. We discuss the currently positive evidence as well as challenges and open questions. We hope that this work will provide useful data points and experience for future research.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| self-supervised-image-classification-on | MoCo v3 (ViT-BN-H) | Number of Params: 700M Top 1 Accuracy: 79.1% |
| self-supervised-image-classification-on | MoCo v3 (ViT-BN-L/7) | Number of Params: 304M Top 1 Accuracy: 81.0% |
| self-supervised-image-classification-on | MoCo v3 (ViT-L) | Number of Params: 307M Top 1 Accuracy: 77.6% |
| self-supervised-image-classification-on | MoCo v3 (ViT-H) | Number of Params: 632M Top 1 Accuracy: 78.1% |
| self-supervised-image-classification-on | MoCo v3 (ViT-B/16) | Number of Params: 86M Top 1 Accuracy: 76.7% |
| self-supervised-image-classification-on-1 | MoCo v3 (ViT-B/16) | Number of Params: 86M Top 1 Accuracy: 83.2% |
| self-supervised-image-classification-on-1 | MoCo v3 (ViT-L/16) | Number of Params: 304M Top 1 Accuracy: 84.1% |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.