HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

Bowen Cheng Lu Sheng Shaoshuai Shi Ming Yang Dong Xu

Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

Abstract

3D object detection in point clouds is a challenging vision task that benefits various applications for understanding the 3D visual world. Lots of recent research focuses on how to exploit end-to-end trainable Hough voting for generating object proposals. However, the current voting strategy can only receive partial votes from the surfaces of potential objects together with severe outlier votes from the cluttered backgrounds, which hampers full utilization of the information from the input point clouds. Inspired by the back-tracing strategy in the conventional Hough voting methods, in this work, we introduce a new 3D object detection method, named as Back-tracing Representative Points Network (BRNet), which generatively back-traces the representative points from the vote centers and also revisits complementary seed points around these generated points, so as to better capture the fine local structural features surrounding the potential objects from the raw point clouds. Therefore, this bottom-up and then top-down strategy in our BRNet enforces mutual consistency between the predicted vote centers and the raw surface points and thus achieves more reliable and flexible object localization and class prediction results. Our BRNet is simple but effective, which significantly outperforms the state-of-the-art methods on two large-scale point cloud datasets, ScanNet V2 (+7.5% in terms of mAP@0.50) and SUN RGB-D (+4.7% in terms of mAP@0.50), while it is still lightweight and efficient. Code will be available at https://github.com/cheng052/BRNet.

Code Repositories

cheng052/BRNet
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
3d-object-detection-on-scannetv2BRNet
mAP@0.25: 66.1
mAP@0.5: 50.9
3d-object-detection-on-sun-rgbd-valBRNet(Geo only)
mAP@0.25: 61.1
mAP@0.5: 43.7

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds | Papers | HyperAI