Command Palette
Search for a command to run...
FlipReID: Closing the Gap between Training and Inference in Person Re-Identification
Xingyang Ni Esa Rahtu

Abstract
Since neural networks are data-hungry, incorporating data augmentation in training is a widely adopted technique that enlarges datasets and improves generalization. On the other hand, aggregating predictions of multiple augmented samples (i.e., test-time augmentation) could boost performance even further. In the context of person re-identification models, it is common practice to extract embeddings for both the original images and their horizontally flipped variants. The final representation is the mean of the aforementioned feature vectors. However, such scheme results in a gap between training and inference, i.e., the mean feature vectors calculated in inference are not part of the training pipeline. In this study, we devise the FlipReID structure with the flipping loss to address this issue. More specifically, models using the FlipReID structure are trained on the original images and the flipped images simultaneously, and incorporating the flipping loss minimizes the mean squared error between feature vectors of corresponding image pairs. Extensive experiments show that our method brings consistent improvements. In particular, we set a new record for MSMT17 which is the largest person re-identification dataset. The source code is available at https://github.com/nixingyang/FlipReID.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| person-re-identification-on-dukemtmc-reid | FlipReID (with re-ranking) | Rank-1: 93.0 mAP: 90.7 |
| person-re-identification-on-dukemtmc-reid | FlipReID (without re-ranking) | Rank-1: 90.9 mAP: 81.5 |
| person-re-identification-on-market-1501 | FlipReID (with re-ranking) | Rank-1: 95.8 mAP: 94.7 |
| person-re-identification-on-market-1501 | FlipReID (without re-ranking) | Rank-1: 95.5 mAP: 89.6 |
| person-re-identification-on-msmt17 | FlipReID (without re-ranking) | Rank-1: 85.6 mAP: 68.0 |
| person-re-identification-on-msmt17 | FlipReID (with re-ranking) | Rank-1: 87.5 mAP: 81.3 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.