HyperAIHyperAI

Command Palette

Search for a command to run...

Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages

Yi Luo Aiguo Chen Ke Yan Ling Tian

Abstract

Nowadays, Graph Neural Networks (GNNs) following the Message Passing paradigm become the dominant way to learn on graphic data. Models in this paradigm have to spend extra space to look up adjacent nodes with adjacency matrices and extra time to aggregate multiple messages from adjacent nodes. To address this issue, we develop a method called LinkDist that distils self-knowledge from connected node pairs into a Multi-Layer Perceptron (MLP) without the need to aggregate messages. Experiment with 8 real-world datasets shows the MLP derived from LinkDist can predict the label of a node without knowing its adjacencies but achieve comparable accuracy against GNNs in the contexts of semi- and full-supervised node classification. Moreover, LinkDist benefits from its Non-Message Passing paradigm that we can also distil self-knowledge from arbitrarily sampled node pairs in a contrastive way to further boost the performance of LinkDist.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages | Papers | HyperAI