HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows

Denis Gudovskiy Shun Ishizaka Kazuki Kozuka

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows

Abstract

Unsupervised anomaly detection with localization has many practical applications when labeling is infeasible and, moreover, when anomaly examples are completely missing in the train data. While recently proposed models for such data setup achieve high accuracy metrics, their complexity is a limiting factor for real-time processing. In this paper, we propose a real-time model and analytically derive its relationship to prior methods. Our CFLOW-AD model is based on a conditional normalizing flow framework adopted for anomaly detection with localization. In particular, CFLOW-AD consists of a discriminatively pretrained encoder followed by a multi-scale generative decoders where the latter explicitly estimate likelihood of the encoded features. Our approach results in a computationally and memory-efficient model: CFLOW-AD is faster and smaller by a factor of 10x than prior state-of-the-art with the same input setting. Our experiments on the MVTec dataset show that CFLOW-AD outperforms previous methods by 0.36% AUROC in detection task, by 1.12% AUROC and 2.5% AUPRO in localization task, respectively. We open-source our code with fully reproducible experiments.

Code Repositories

caoyunkang/IKD
pytorch
Mentioned in GitHub
gudovskiy/cflow-ad
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
anomaly-classification-on-goodsadCFLOW-AD
AUPR: 75.3
AUROC: 71.2
anomaly-detection-on-mvtec-adCFLOW-AD
Detection AUROC: 98.26
FPS: 27
Segmentation AUPRO: 94.6
Segmentation AUROC: 98.62
anomaly-detection-on-visaCFLOW
Detection AUROC: 91.5

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows | Papers | HyperAI