HyperAIHyperAI

Command Palette

Search for a command to run...

Full-Duplex Strategy for Video Object Segmentation

Ge-Peng Ji Deng-Ping Fan* Keren Fu Zhe Wu Jianbing Shen Ling Shao

Abstract

Previous video object segmentation approaches mainly focus on using simplex solutions between appearance and motion, limiting feature collaboration efficiency among and across these two cues. In this work, we study a novel and efficient full-duplex strategy network (FSNet) to address this issue, by considering a better mutual restraint scheme between motion and appearance in exploiting the cross-modal features from the fusion and decoding stage. Specifically, we introduce the relational cross-attention module (RCAM) to achieve bidirectional message propagation across embedding sub-spaces. To improve the model's robustness and update the inconsistent features from the spatial-temporal embeddings, we adopt the bidirectional purification module (BPM) after the RCAM. Extensive experiments on five popular benchmarks show that our FSNet is robust to various challenging scenarios (e.g., motion blur, occlusion) and achieves favourable performance against existing cutting-edges both in the video object segmentation and video salient object detection tasks. The project is publicly available at: https://dpfan.net/FSNet.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Full-Duplex Strategy for Video Object Segmentation | Papers | HyperAI