HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization

Pilhyeon Lee Hyeran Byun

Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization

Abstract

We tackle the problem of localizing temporal intervals of actions with only a single frame label for each action instance for training. Owing to label sparsity, existing work fails to learn action completeness, resulting in fragmentary action predictions. In this paper, we propose a novel framework, where dense pseudo-labels are generated to provide completeness guidance for the model. Concretely, we first select pseudo background points to supplement point-level action labels. Then, by taking the points as seeds, we search for the optimal sequence that is likely to contain complete action instances while agreeing with the seeds. To learn completeness from the obtained sequence, we introduce two novel losses that contrast action instances with background ones in terms of action score and feature similarity, respectively. Experimental results demonstrate that our completeness guidance indeed helps the model to locate complete action instances, leading to large performance gains especially under high IoU thresholds. Moreover, we demonstrate the superiority of our method over existing state-of-the-art methods on four benchmarks: THUMOS'14, GTEA, BEOID, and ActivityNet. Notably, our method even performs comparably to recent fully-supervised methods, at the 6 times cheaper annotation cost. Our code is available at https://github.com/Pilhyeon.

Code Repositories

Pilhyeon/Learning-Action-Completeness-from-Points
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
weakly-supervised-action-localization-onLACP
mAP@0.1:0.5: 62.7
mAP@0.1:0.7: 52.8
mAP@0.5: 45.3
weakly-supervised-action-localization-on-1LACP
mAP@0.5: 40.4
mAP@0.5:0.95: 25.1
weakly-supervised-action-localization-on-2LACP
Mean mAP: 26.8
mAP@0.5: 44
weakly-supervised-action-localization-on-4LACP
mAP@0.5: 45.3
weakly-supervised-action-localization-on-5LACP
avg-mAP (0.1-0.5): 62.7
avg-mAP (0.1:0.7): 52.8
avg-mAP (0.3-0.7): 44.5
weakly-supervised-action-localization-on-6LACP
mAP@0.1:0.7: 51.8
mAP@0.5: 42.7
weakly-supervised-action-localization-on-gteaLACP
mAP@0.1:0.7: 43.5
mAP@0.5: 33.9

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization | Papers | HyperAI