HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Self-Supervised Learning by Estimating Twin Class Distributions

Feng Wang; Tao Kong; Rufeng Zhang; Huaping Liu; Hang Li

Self-Supervised Learning by Estimating Twin Class Distributions

Abstract

We present TWIST, a simple and theoretically explainable self-supervised representation learning method by classifying large-scale unlabeled datasets in an end-to-end way. We employ a siamese network terminated by a softmax operation to produce twin class distributions of two augmented images. Without supervision, we enforce the class distributions of different augmentations to be consistent. However, simply minimizing the divergence between augmentations will cause collapsed solutions, i.e., outputting the same class probability distribution for all images. In this case, no information about the input image is left. To solve this problem, we propose to maximize the mutual information between the input and the class predictions. Specifically, we minimize the entropy of the distribution for each sample to make the class prediction for each sample assertive and maximize the entropy of the mean distribution to make the predictions of different samples diverse. In this way, TWIST can naturally avoid the collapsed solutions without specific designs such as asymmetric network, stop-gradient operation, or momentum encoder. As a result, TWIST outperforms state-of-the-art methods on a wide range of tasks. Especially, TWIST performs surprisingly well on semi-supervised learning, achieving 61.2% top-1 accuracy with 1% ImageNet labels using a ResNet-50 as backbone, surpassing previous best results by an absolute improvement of 6.2%. Codes and pre-trained models are given on: https://github.com/bytedance/TWIST

Code Repositories

bytedance/TWIST
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
fine-grained-image-classification-on-caltechTWIST (ResNet-50 )
Accuracy: 93.5%
Top-1 Error Rate: 6.5%
fine-grained-image-classification-on-sun397TWIST (ResNet-50)
Accuracy: 67.4
image-classification-on-dtdTWIST (ResNet-50)
Accuracy: 76.6
image-classification-on-food-101-1TWIST (ResNet-50)
Accuracy (%): 89.3
image-classification-on-oxford-iiit-petsTWIST (ResNet-50)
Accuracy: 94.5
semi-supervised-image-classification-on-1TWIST (ResNet-50 x2)
Top 1 Accuracy: 67.2%
Top 5 Accuracy: 88.2%
semi-supervised-image-classification-on-2TWIST (ResNet-50 x2)
Top 1 Accuracy: 75.3%
Top 5 Accuracy: 92.8%
unsupervised-image-classification-on-imagenetTWIST (ResNet-50)
ARI: 30.0
Accuracy (%): 40.6

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Self-Supervised Learning by Estimating Twin Class Distributions | Papers | HyperAI