HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

Zhaoyuan Yin Pichao Wang Fan Wang Xianzhe Xu Hanling Zhang Hao Li Rong Jin

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

Abstract

Unsupervised semantic segmentation aims to obtain high-level semantic representation on low-level visual features without manual annotations. Most existing methods are bottom-up approaches that try to group pixels into regions based on their visual cues or certain predefined rules. As a result, it is difficult for these bottom-up approaches to generate fine-grained semantic segmentation when coming to complicated scenes with multiple objects and some objects sharing similar visual appearance. In contrast, we propose the first top-down unsupervised semantic segmentation framework for fine-grained segmentation in extremely complicated scenarios. Specifically, we first obtain rich high-level structured semantic concept information from large-scale vision data in a self-supervised learning manner, and use such information as a prior to discover potential semantic categories presented in target datasets. Secondly, the discovered high-level semantic categories are mapped to low-level pixel features by calculating the class activate map (CAM) with respect to certain discovered semantic representation. Lastly, the obtained CAMs serve as pseudo labels to train the segmentation module and produce the final semantic segmentation. Experimental results on multiple semantic segmentation benchmarks show that our top-down unsupervised segmentation is robust to both object-centric and scene-centric datasets under different semantic granularity levels, and outperforms all the current state-of-the-art bottom-up methods. Our code is available at \url{https://github.com/damo-cv/TransFGU}.

Code Repositories

damo-cv/transfgu
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
unsupervised-semantic-segmentation-on-coco-6TransFGU (ViT-S/8)
Pixel Accuracy: 34.32
mIoU: 11.93
unsupervised-semantic-segmentation-on-coco-8TransFGU (ViT-S/8)
Pixel Accuracy: 64.3
mIoU: 12.7

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation | Papers | HyperAI