HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Zero-Shot Recommendation as Language Modeling

Damien Sileo Wout Vossen Robbe Raymaekers

Zero-Shot Recommendation as Language Modeling

Abstract

Recommendation is the task of ranking items (e.g. movies or products) according to individual user needs. Current systems rely on collaborative filtering and content-based techniques, which both require structured training data. We propose a framework for recommendation with off-the-shelf pretrained language models (LM) that only used unstructured text corpora as training data. If a user $u$ liked \textit{Matrix} and \textit{Inception}, we construct a textual prompt, e.g. \textit{"Movies like Matrix, Inception, ${<}m{>}$"} to estimate the affinity between $u$ and $m$ with LM likelihood. We motivate our idea with a corpus analysis, evaluate several prompt structures, and we compare LM-based recommendation with standard matrix factorization trained on different data regimes. The code for our experiments is publicly available (https://colab.research.google.com/drive/1f1mlZ-FGaLGdo5rPzxf3vemKllbh2esT?usp=sharing).

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
language-modelling-on-language-modelingGPT2
1:1 Accuracy: 48.8

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Zero-Shot Recommendation as Language Modeling | Papers | HyperAI