HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Smoothing Matters: Momentum Transformer for Domain Adaptive Semantic Segmentation

Runfa Chen; Yu Rong; Shangmin Guo; Jiaqi Han; Fuchun Sun; Tingyang Xu; Wenbing Huang

Smoothing Matters: Momentum Transformer for Domain Adaptive Semantic Segmentation

Abstract

After the great success of Vision Transformer variants (ViTs) in computer vision, it has also demonstrated great potential in domain adaptive semantic segmentation. Unfortunately, straightforwardly applying local ViTs in domain adaptive semantic segmentation does not bring in expected improvement. We find that the pitfall of local ViTs is due to the severe high-frequency components generated during both the pseudo-label construction and features alignment for target domains. These high-frequency components make the training of local ViTs very unsmooth and hurt their transferability. In this paper, we introduce a low-pass filtering mechanism, momentum network, to smooth the learning dynamics of target domain features and pseudo labels. Furthermore, we propose a dynamic of discrepancy measurement to align the distributions in the source and target domains via dynamic weights to evaluate the importance of the samples. After tackling the above issues, extensive experiments on sim2real benchmarks show that the proposed method outperforms the state-of-the-art methods. Our codes are available at https://github.com/alpc91/TransDA

Code Repositories

alpc91/transda
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
domain-adaptation-on-gta5-to-cityscapesTransDA-B
mIoU: 63.9
image-to-image-translation-on-gtav-toTransDA-B
mIoU: 63.9
image-to-image-translation-on-synthia-toTransDA-B
mIoU (13 classes): 66.3
semantic-segmentation-on-gtav-to-cityscapes-1TransDA-B
mIoU: 63.9
semantic-segmentation-on-synthia-toTransDA-B
Mean IoU: 59.3
synthetic-to-real-translation-on-gtav-toTransDA-B
mIoU: 63.9
synthetic-to-real-translation-on-synthia-to-1TransDA-B
MIoU (13 classes): 66.3
MIoU (16 classes): 59.3
unsupervised-domain-adaptation-on-gtav-toTransDA-B
mIoU: 63.9
unsupervised-domain-adaptation-on-synthia-toTransDA-B
mIoU (13 classes): 66.3

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Smoothing Matters: Momentum Transformer for Domain Adaptive Semantic Segmentation | Papers | HyperAI