Command Palette
Search for a command to run...
Hao Tian; Rajas Ketkar; Peng Tao

Abstract
The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties are important in drug discovery as they define efficacy and safety. In this work, we applied an ensemble of features, including fingerprints and descriptors, and a tree-based machine learning model, extreme gradient boosting, for accurate ADMET prediction. Our model performs well in the Therapeutics Data Commons ADMET benchmark group. For 22 tasks, our model is ranked first in 18 tasks and top 3 in 21 tasks. The trained machine learning models are integrated in ADMETboost, a web server that is publicly available at https://ai-druglab.smu.edu/admet.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| molecular-property-prediction-on-bbbp-1 | XGBoost | ROC-AUC: 90.5 |
| tdc-admet-benchmarking-group-on-tdcommons | XGBoost | TDC.AMES: 0.859 TDC.BBB_Martins: 0.905 TDC.Bioavailability_Ma: 0.7 TDC.CYP2C9_Inhibition_Veith: 0.877 TDC.CYP2C9_Substrate_CarbonMangels: 0.680 TDC.CYP2D6_Inhibition_Veith: 0.794 TDC.CYP2D6_Substrate_CarbonMangels: 0.387 TDC.CYP3A4_Inhibition_Veith: 0.721 TDC.CYP3A4_Substrate_CarbonMangels: 0.648 TDC.Caco2_Wang: 0.288 TDC.Clearance_Hepatocyte_AZ: 0.587 TDC.Clearance_Microsome_AZ: 0.420 TDC.DILI: 0.933 TDC.HIA_Hou: 0.987 TDC.Half_Life_Obach: 0.396 TDC.LD50_Zhu: 0.602 TDC.Lipophilicity_AstraZeneca: 0.533 TDC.PPBR_AZ: 8.251 TDC.Pgp_Broccatelli: 0.911 TDC.Solubility_AqSolDB: 0.727 TDC.VDss_Lombardo: 0.612 TDC.hERG: 0.806 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.