Command Palette
Search for a command to run...
Chenguang Wang; Xiao Liu; Zui Chen; Haoyun Hong; Jie Tang; Dawn Song

Abstract
We introduce a method for improving the structural understanding abilities of language models. Unlike previous approaches that finetune the models with task-specific augmentation, we pretrain language models on a collection of task-agnostic corpora to generate structures from text. Our structure pretraining enables zero-shot transfer of the learned knowledge that models have about the structure tasks. We study the performance of this approach on 28 datasets, spanning 10 structure prediction tasks including open information extraction, joint entity and relation extraction, named entity recognition, relation classification, semantic role labeling, event extraction, coreference resolution, factual probe, intent detection, and dialogue state tracking. We further enhance the pretraining with the task-specific training sets. We show that a 10B parameter language model transfers non-trivially to most tasks and obtains state-of-the-art performance on 21 of 28 datasets that we evaluate.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| coreference-resolution-on-conll12 | DeepStruct multi-task | Average F1: 60.6 B3: 57.7 CEAFϕ4: 60.2 MUC: 63.9 |
| coreference-resolution-on-conll12 | DeepStruct multi-task w/ finetune | Average F1: 73.1 B3: 71.3 CEAFϕ4: 73.1 MUC: 74.9 |
| dialogue-state-tracking-on-multiwoz-2-1 | DeepStruct multi-task w/ finetune | Joint Acc: 54.2 |
| dialogue-state-tracking-on-multiwoz-2-1 | DeepStruct multi-task | Joint Acc: 53.5 |
| event-extraction-on-ace2005 | DeepStruct multi-task | Argument Cl: 63.9 Argument Id: 67.5 Trigger Cl: 69.2 Trigger Id: 72.7 |
| event-extraction-on-ace2005 | DeepStruct multi-task w/ finetune | Argument Cl: 56.2 Argument Id: 59.4 Trigger Cl: 69.8 Trigger Id: 73.5 |
| joint-entity-and-relation-extraction-on-2 | DeepStruct multi-task w/ finetune | Entity F1: 90.7 Relation F1: 78.3 |
| joint-entity-and-relation-extraction-on-2 | Deepstruct zero-shot | Entity F1: 48.3 Relation F1: 25.8 |
| joint-entity-and-relation-extraction-on-2 | DeepStruct multi-task | Entity F1: 88.4 Relation F1: 72.8 |
| joint-entity-and-relation-extraction-on-7 | DeepStruct multi-task | Entity F1: 90.2 Relation F1: 58.9 |
| joint-entity-and-relation-extraction-on-7 | DeepStruct multi-task w/ finetune | Entity F1: 90.0 Relation F1: 66.8 |
| joint-entity-and-relation-extraction-on-7 | Deepstruct zero-shot | Entity F1: 31.8 Relation F1: 5.3 |
| joint-entity-and-relation-extraction-on-ade-1 | Deepstruct zero-shot | Entity F1: 60.7 Relation F1: 10.6 |
| joint-entity-and-relation-extraction-on-ade-1 | DeepStruct multi-task | Entity F1: 90.5 Relation F1: 83.6 |
| joint-entity-and-relation-extraction-on-ade-1 | DeepStruct multi-task w/ finetune | Entity F1: 91.1 Relation F1: 83.8 |
| joint-entity-and-relation-extraction-on-nyt | DeepStruct multi-task w/ finetune | Entity F1: 95.9 Relation F1: 93.3 |
| joint-entity-and-relation-extraction-on-nyt | DeepStruct multi-task | Entity F1: 95.4 Relation F1: 93.7 |
| joint-entity-and-relation-extraction-on-nyt | Deepstruct zero-shot | Entity F1: 60.5 Relation F1: 28.6 |
| named-entity-recognition-on-ace2005 | Deepstruct zero-shot | F1: 28.1 |
| named-entity-recognition-on-ace2005 | DeepStruct multi-task w/ finetune | F1: 86.9 |
| named-entity-recognition-on-conll03 | DeepStruct multi-task | F1: 93.1 |
| named-entity-recognition-on-conll03 | Deepstruct zero-shot | F1: 44.4 |
| named-entity-recognition-on-conll03 | DeepStruct multi-task w/ finetune | F1: 93.0 |
| named-entity-recognition-on-genia | DeepStruct multi-task | F1: 80.2 |
| named-entity-recognition-on-genia | DeepStruct multi-task w/ finetune | F1: 80.8 |
| named-entity-recognition-on-genia | Deepstruct zero-shot | F1: 47.2 |
| named-entity-recognition-on-ontonotes | Deepstruct zero-shot | F1: 2.5 |
| named-entity-recognition-on-ontonotes | DeepStruct multi-task | F1: 87.6 |
| named-entity-recognition-on-ontonotes | DeepStruct multi-task w/ finetune | F1: 87.8 |
| open-information-extraction-on-nyt | DeepStruct multi-task | F1: 43.6 |
| open-information-extraction-on-nyt | Deepstruct zero-shot | F1: 28.9 |
| open-information-extraction-on-nyt | DeepStruct multi-task w/ finetune | F1: 45.0 |
| open-information-extraction-on-oie2016 | Deepstruct zero-shot | F1: 28.1 |
| open-information-extraction-on-oie2016 | DeepStruct multi-task w/ finetune | F1: 71.3 |
| open-information-extraction-on-oie2016 | Deepstruct multi-task | F1: 71.2 |
| open-information-extraction-on-penn-treebank | DeepStruct multi-task w/ finetune | F1: 45,1 |
| open-information-extraction-on-penn-treebank | DeepStruct multi-task | F1: 54.5 |
| open-information-extraction-on-penn-treebank | Deepstruct zero-shot | F1: 51 |
| open-information-extraction-on-web | DeepStruct multi-task | F1: 50.8 |
| open-information-extraction-on-web | DeepStruct multi-task w/ finetune | F1: 49.1 |
| open-information-extraction-on-web | Deepstruct zero-shot | F1: 43.8 |
| relation-classification-on-fewrel-1 | Deepstruct zero-shot | F1 (10-way 1-shot): 67.6 F1 (10-way 5-shot): 66.4 F1 (5-way 1-shot): 72.4 F1 (5-way 5-shot: 70.8 |
| relation-classification-on-fewrel-1 | DeepStruct multi-task w/ finetune | F1 (10-way 1-shot): 97.8 F1 (10-way 5-shot): 99.8 F1 (5-way 1-shot): 98.4 F1 (5-way 5-shot: 100 |
| relation-classification-on-fewrel-1 | DeepStruct multi-task | F1 (10-way 1-shot): 92.2 F1 (10-way 5-shot): 94.6 F1 (5-way 1-shot): 93.6 F1 (5-way 5-shot: 96.4 |
| relation-classification-on-tacred-1 | Deepstruct zero-shot | F1: 36.1 |
| relation-classification-on-tacred-1 | DeepStruct multi-task w/ finetune | F1: 76.8 |
| relation-classification-on-tacred-1 | DeepStruct multi-task | F1: 74.9 |
| relation-extraction-on-tacred | DeepStruct multi-task w/ finetune | F1: 76.8 |
| semantic-role-labeling-on-conll05-brown | DeepStruct multi-task w/ finetune | F1: 92.1 |
| semantic-role-labeling-on-conll05-brown | DeepStruct multi-task | F1: 92.0 |
| semantic-role-labeling-on-conll05-wsj | DeepStruct multi-task w/ finetune | F1: 95.2 |
| semantic-role-labeling-on-conll05-wsj | DeepStruct multi-task | F1: 95.5 |
| semantic-role-labeling-on-conll12 | DeepStruct multi-task | F1: 97.2 |
| semantic-role-labeling-on-conll12 | DeepStruct multi-task w/ finetune | F1: 96.0 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.