HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

GASP: Gated Attention For Saliency Prediction

Fares Abawi; Tom Weber; Stefan Wermter

GASP: Gated Attention For Saliency Prediction

Abstract

Saliency prediction refers to the computational task of modeling overt attention. Social cues greatly influence our attention, consequently altering our eye movements and behavior. To emphasize the efficacy of such features, we present a neural model for integrating social cues and weighting their influences. Our model consists of two stages. During the first stage, we detect two social cues by following gaze, estimating gaze direction, and recognizing affect. These features are then transformed into spatiotemporal maps through image processing operations. The transformed representations are propagated to the second stage (GASP) where we explore various techniques of late fusion for integrating social cues and introduce two sub-networks for directing attention to relevant stimuli. Our experiments indicate that fusion approaches achieve better results for static integration methods, whereas non-fusion approaches for which the influence of each modality is unknown, result in better outcomes when coupled with recurrent models for dynamic saliency prediction. We show that gaze direction and affective representations contribute a prediction to ground-truth correspondence improvement of at least 5% compared to dynamic saliency models without social cues. Furthermore, affective representations improve GASP, supporting the necessity of considering affect-biased attention in predicting saliency.

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
video-saliency-detection-on-msu-videoGASP
AUC-J: 0.810
CC: 0.613
FPS: 3.77
KLDiv: 0.687
NSS: 1.57
SIM: 0.557

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
GASP: Gated Attention For Saliency Prediction | Papers | HyperAI