HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

DiffWire: Inductive Graph Rewiring via the Lovász Bound

Adrian Arnaiz-Rodriguez Ahmed Begga Francisco Escolano Nuria Oliver

DiffWire: Inductive Graph Rewiring via the Lovász Bound

Abstract

Graph Neural Networks (GNNs) have been shown to achieve competitive results to tackle graph-related tasks, such as node and graph classification, link prediction and node and graph clustering in a variety of domains. Most GNNs use a message passing framework and hence are called MPNNs. Despite their promising results, MPNNs have been reported to suffer from over-smoothing, over-squashing and under-reaching. Graph rewiring and graph pooling have been proposed in the literature as solutions to address these limitations. However, most state-of-the-art graph rewiring methods fail to preserve the global topology of the graph, are neither differentiable nor inductive, and require the tuning of hyper-parameters. In this paper, we propose DiffWire, a novel framework for graph rewiring in MPNNs that is principled, fully differentiable and parameter-free by leveraging the Lovász bound. The proposed approach provides a unified theory for graph rewiring by proposing two new, complementary layers in MPNNs: CT-Layer, a layer that learns the commute times and uses them as a relevance function for edge re-weighting; and GAP-Layer, a layer to optimize the spectral gap, depending on the nature of the network and the task at hand. We empirically validate the value of each of these layers separately with benchmark datasets for graph classification. We also perform preliminary studies on the use of CT-Layer for homophilic and heterophilic node classification tasks. DiffWire brings together the learnability of commute times to related definitions of curvature, opening the door to creating more expressive MPNNs.

Benchmarks

BenchmarkMethodologyMetrics
graph-classification-on-collabCT-Layer
Accuracy: 69.87%
graph-classification-on-collabGAP-Layer (Rcut)
Accuracy: 64.47%
graph-classification-on-collabDiffWire
Accuracy: 72.24%
graph-classification-on-collabGAP-Layer (Ncut)
Accuracy: 65.89%
graph-classification-on-imdb-binaryGAP-Layer (Rcut)
Accuracy: 69.93
graph-classification-on-imdb-binaryGAP-Layer (Ncut)
Accuracy: 68.8
graph-classification-on-imdb-binaryCT-Layer
Accuracy: 69.84
graph-classification-on-mutagGAP-Layer (Ncut)
Accuracy: 86.9%
graph-classification-on-mutagCT-Layer
Accuracy: 87.58%
graph-classification-on-mutagGAP-Layer (Rcut)
Accuracy: 86.9%
graph-classification-on-proteinsDiffWire
Accuracy: 74.91%
graph-classification-on-proteinsGAP-Layer (Ncut)
Accuracy: 75.34%
graph-classification-on-proteinsCT-Layer
Accuracy: 75.38%
graph-classification-on-proteinsGAP-Layer (Rcut)
Accuracy: 75.03%
graph-classification-on-reddit-binaryGAP-Layer (Rcut)
Accuracy: 77.63
graph-classification-on-reddit-binaryGAP-Layer (Ncut)
Accuracy: 76
graph-classification-on-reddit-binaryDiffWire
Accuracy: 77.17
graph-classification-on-reddit-binaryCT-Layer
Accuracy: 78.45
node-classification-on-actorCT-Layer (PE)
Accuracy: 29.35
node-classification-on-actorCT-Layer
Accuracy: 31.98
node-classification-on-citeseerCT-Layer (PE)
Accuracy: 72.26
node-classification-on-citeseerCT-Layer
Accuracy: 66.71
node-classification-on-coraCT-Layer (PE)
Accuracy: 83.66%
node-classification-on-coraCT-Layer
Accuracy: 67.96%
node-classification-on-cornellCT-Layer
Accuracy: 69.04
node-classification-on-cornellCT-Layer (PE)
Accuracy: 58.02
node-classification-on-pubmedCT-Layer
Accuracy: 68.19
node-classification-on-pubmedCT-Layer (PE)
Accuracy: 86.07
node-classification-on-wisconsinCT-Layer
Accuracy: 79.05
node-classification-on-wisconsinCT-Layer (PE)
Accuracy: 69.25

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
DiffWire: Inductive Graph Rewiring via the Lovász Bound | Papers | HyperAI