HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Complementary Bi-directional Feature Compression for Indoor 360° Semantic Segmentation with Self-distillation

Zishuo Zheng Chunyu Lin Lang Nie Kang Liao Zhijie Shen Yao Zhao

Complementary Bi-directional Feature Compression for Indoor 360° Semantic Segmentation with Self-distillation

Abstract

Recently, horizontal representation-based panoramic semantic segmentation approaches outperform projection-based solutions, because the distortions can be effectively removed by compressing the spherical data in the vertical direction. However, these methods ignore the distortion distribution prior and are limited to unbalanced receptive fields, e.g., the receptive fields are sufficient in the vertical direction and insufficient in the horizontal direction. Differently, a vertical representation compressed in another direction can offer implicit distortion prior and enlarge horizontal receptive fields. In this paper, we combine the two different representations and propose a novel 360° semantic segmentation solution from a complementary perspective. Our network comprises three modules: a feature extraction module, a bi-directional compression module, and an ensemble decoding module. First, we extract multi-scale features from a panorama. Then, a bi-directional compression module is designed to compress features into two complementary low-dimensional representations, which provide content perception and distortion prior. Furthermore, to facilitate the fusion of bi-directional features, we design a unique self distillation strategy in the ensemble decoding module to enhance the interaction of different features and further improve the performance. Experimental results show that our approach outperforms the state-of-the-art solutions with at least 10\% improvement on quantitative evaluations while displaying the best performance on visual appearance.

Benchmarks

BenchmarkMethodologyMetrics
semantic-segmentation-on-stanford2d3d-1CBFC
mAcc: 65.6
mIoU: 52.2%
semantic-segmentation-on-stanford2d3d-2CBFC
mAcc: 70.8
mIoU: 56.7

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Complementary Bi-directional Feature Compression for Indoor 360° Semantic Segmentation with Self-distillation | Papers | HyperAI