HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Hierarchically Decomposed Graph Convolutional Networks for Skeleton-Based Action Recognition

Jungho Lee Minhyeok Lee Dogyoon Lee Sangyoun Lee

Hierarchically Decomposed Graph Convolutional Networks for Skeleton-Based Action Recognition

Abstract

Graph convolutional networks (GCNs) are the most commonly used methods for skeleton-based action recognition and have achieved remarkable performance. Generating adjacency matrices with semantically meaningful edges is particularly important for this task, but extracting such edges is challenging problem. To solve this, we propose a hierarchically decomposed graph convolutional network (HD-GCN) architecture with a novel hierarchically decomposed graph (HD-Graph). The proposed HD-GCN effectively decomposes every joint node into several sets to extract major structurally adjacent and distant edges, and uses them to construct an HD-Graph containing those edges in the same semantic spaces of a human skeleton. In addition, we introduce an attention-guided hierarchy aggregation (A-HA) module to highlight the dominant hierarchical edge sets of the HD-Graph. Furthermore, we apply a new six-way ensemble method, which uses only joint and bone stream without any motion stream. The proposed model is evaluated and achieves state-of-the-art performance on four large, popular datasets. Finally, we demonstrate the effectiveness of our model with various comparative experiments.

Code Repositories

Jho-Yonsei/HD-GCN
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
skeleton-based-action-recognition-on-kineticsHD-GCN
Accuracy: 40.9
skeleton-based-action-recognition-on-n-uclaHD-GCN
Accuracy: 97.2
skeleton-based-action-recognition-on-ntu-rgbdHD-GCN
Accuracy (CS): 93.4
Accuracy (CV): 97.2
Ensembled Modalities: 6
skeleton-based-action-recognition-on-ntu-rgbd-1HD-GCN
Accuracy (Cross-Setup): 91.6
Accuracy (Cross-Subject): 90.1
Ensembled Modalities: 6

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Hierarchically Decomposed Graph Convolutional Networks for Skeleton-Based Action Recognition | Papers | HyperAI