Command Palette
Search for a command to run...
Revisiting Image Pyramid Structure for High Resolution Salient Object Detection
Kim Taehun ; Kim Kunhee ; Lee Joonyeong ; Cha Dongmin ; Lee Jiho ; Kim Daijin

Abstract
Salient object detection (SOD) has been in the spotlight recently, yet hasbeen studied less for high-resolution (HR) images. Unfortunately, HR images andtheir pixel-level annotations are certainly more labor-intensive andtime-consuming compared to low-resolution (LR) images and annotations.Therefore, we propose an image pyramid-based SOD framework, Inverse SaliencyPyramid Reconstruction Network (InSPyReNet), for HR prediction without any ofHR datasets. We design InSPyReNet to produce a strict image pyramid structureof saliency map, which enables to ensemble multiple results with pyramid-basedimage blending. For HR prediction, we design a pyramid blending method whichsynthesizes two different image pyramids from a pair of LR and HR scale fromthe same image to overcome effective receptive field (ERF) discrepancy. Ourextensive evaluations on public LR and HR SOD benchmarks demonstrate thatInSPyReNet surpasses the State-of-the-Art (SotA) methods on various SOD metricsand boundary accuracy.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| dichotomous-image-segmentation-on-dis-te1 | InSPyReNet (HR scale) | E-measure: 0.894 HCE: 110 MAE: 0.045 S-Measure: 0.873 max F-Measure: 0.845 weighted F-measure: 0.788 |
| dichotomous-image-segmentation-on-dis-te1 | InSPyReNet | HCE: 148 S-Measure: 0.862 max F-Measure: 0.834 |
| dichotomous-image-segmentation-on-dis-te2 | InSPyReNet (HR scale) | HCE: 255 S-Measure: 0.905 max F-Measure: 0.894 |
| dichotomous-image-segmentation-on-dis-te2 | InSPyReNet | E-measure: 0.925 HCE: 316 MAE: 0.038 S-Measure: 0.893 max F-Measure: 0.881 weighted F-measure: 0.834 |
| dichotomous-image-segmentation-on-dis-te3 | InSPyReNet (HR scale) | E-measure: 0.938 HCE: 522 MAE: 0.034 S-Measure: 0.918 max F-Measure: 0.919 weighted F-measure: 0.871 |
| dichotomous-image-segmentation-on-dis-te3 | InSPyReNet | E-measure: 0.938 HCE: 582 MAE: 0.038 S-Measure: 0.902 max F-Measure: 0.904 weighted F-measure: 0.856 |
| dichotomous-image-segmentation-on-dis-te4 | InSPyReNet | E-measure: 0.926 HCE: 2243 MAE: 0.046 S-Measure: 0.891 max F-Measure: 0.892 weighted F-measure: 0.840 |
| dichotomous-image-segmentation-on-dis-te4 | InSPyReNet (HR scale) | E-measure: 0.926 HCE: 2336 MAE: 0.042 S-Measure: 0.905 max F-Measure: 0.905 weighted F-measure: 0.848 |
| dichotomous-image-segmentation-on-dis-vd | InSPyReNet (HR scale) | HCE: 904 S-Measure: 0.900 max F-Measure: 0.889 |
| dichotomous-image-segmentation-on-dis-vd | InSPyReNet | E-measure: 0.921 HCE: 905 MAE: 0.043 S-Measure: 0.887 max F-Measure: 0.876 weighted F-measure: 0.826 |
| rgb-salient-object-detection-on-davis-s | InSPyReNet (DUTS, HRSOD) | F-measure: 0.976 S-measure: 0.972 mBA: 0.770 |
| rgb-salient-object-detection-on-davis-s | InSPyReNet | F-measure: 0.959 MAE: 0.009 S-measure: 0.962 mBA: 0.743 |
| rgb-salient-object-detection-on-hrsod | InSPyReNet (HRSOD, UHRSD) | MAE: 0.018 S-Measure: 0.956 mBA: 0.771 max F-Measure: 0.956 |
| rgb-salient-object-detection-on-hrsod | InSPyReNet (DUTS, HRSOD) | MAE: 0.014 S-Measure: 0.960 mBA: 0.766 max F-Measure: 0.957 |
| rgb-salient-object-detection-on-hrsod | InSPyReNet | MAE: 0.016 S-Measure: 0.952 mBA: 0.738 max F-Measure: 0.949 |
| rgb-salient-object-detection-on-uhrsd | InSPyReNet (HRSOD, UHRSD) | MAE: 0.020 S-Measure: 0.953 mBA: 0.812 max F-Measure: 0.957 |
| rgb-salient-object-detection-on-uhrsd | InSPyReNet (DUTS, HRSOD) | S-Measure: 0.936 mBA: 0.785 |
| rgb-salient-object-detection-on-uhrsd | InSPyReNet | MAE: 0.029 S-Measure: 0.932 mBA: 0.741 max F-Measure: 0.938 |
| salient-object-detection-on-dut-omron | InSPyReNet | F-measure: 0.832 MAE: 0.045 S-Measure: 0.875 |
| salient-object-detection-on-duts-te | InSPyReNet | MAE: 0.024 S-Measure: 0.931 max F-measure: 0.892 |
| salient-object-detection-on-ecssd | InSPyReNet | F-measure: 0.96 MAE: 0.031 S-Measure: 0.936 |
| salient-object-detection-on-hku-is | InSPyReNet | F-measure: 0.955 MAE: 0.028 S-Measure: 0.944 |
| salient-object-detection-on-pascal-s | InSPyReNet | F-measure: 0.893 MAE: 0.048 S-Measure: 0.893 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.