HyperAIHyperAI

Command Palette

Search for a command to run...

Revisiting Image Pyramid Structure for High Resolution Salient Object Detection

Taehun Kim Kunhee Kim Joonyeong Lee Dongmin Cha Jiho Lee Daijin Kim

Abstract

Salient object detection (SOD) has been in the spotlight recently, yet hasbeen studied less for high-resolution (HR) images. Unfortunately, HR images andtheir pixel-level annotations are certainly more labor-intensive andtime-consuming compared to low-resolution (LR) images and annotations.Therefore, we propose an image pyramid-based SOD framework, Inverse SaliencyPyramid Reconstruction Network (InSPyReNet), for HR prediction without any ofHR datasets. We design InSPyReNet to produce a strict image pyramid structureof saliency map, which enables to ensemble multiple results with pyramid-basedimage blending. For HR prediction, we design a pyramid blending method whichsynthesizes two different image pyramids from a pair of LR and HR scale fromthe same image to overcome effective receptive field (ERF) discrepancy. Ourextensive evaluations on public LR and HR SOD benchmarks demonstrate thatInSPyReNet surpasses the State-of-the-Art (SotA) methods on various SOD metricsand boundary accuracy.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp