HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Revisiting Image Pyramid Structure for High Resolution Salient Object Detection

Kim Taehun ; Kim Kunhee ; Lee Joonyeong ; Cha Dongmin ; Lee Jiho ; Kim Daijin

Revisiting Image Pyramid Structure for High Resolution Salient Object
  Detection

Abstract

Salient object detection (SOD) has been in the spotlight recently, yet hasbeen studied less for high-resolution (HR) images. Unfortunately, HR images andtheir pixel-level annotations are certainly more labor-intensive andtime-consuming compared to low-resolution (LR) images and annotations.Therefore, we propose an image pyramid-based SOD framework, Inverse SaliencyPyramid Reconstruction Network (InSPyReNet), for HR prediction without any ofHR datasets. We design InSPyReNet to produce a strict image pyramid structureof saliency map, which enables to ensemble multiple results with pyramid-basedimage blending. For HR prediction, we design a pyramid blending method whichsynthesizes two different image pyramids from a pair of LR and HR scale fromthe same image to overcome effective receptive field (ERF) discrepancy. Ourextensive evaluations on public LR and HR SOD benchmarks demonstrate thatInSPyReNet surpasses the State-of-the-Art (SotA) methods on various SOD metricsand boundary accuracy.

Code Repositories

plemeri/inspyrenet
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
dichotomous-image-segmentation-on-dis-te1InSPyReNet (HR scale)
E-measure: 0.894
HCE: 110
MAE: 0.045
S-Measure: 0.873
max F-Measure: 0.845
weighted F-measure: 0.788
dichotomous-image-segmentation-on-dis-te1InSPyReNet
HCE: 148
S-Measure: 0.862
max F-Measure: 0.834
dichotomous-image-segmentation-on-dis-te2InSPyReNet (HR scale)
HCE: 255
S-Measure: 0.905
max F-Measure: 0.894
dichotomous-image-segmentation-on-dis-te2InSPyReNet
E-measure: 0.925
HCE: 316
MAE: 0.038
S-Measure: 0.893
max F-Measure: 0.881
weighted F-measure: 0.834
dichotomous-image-segmentation-on-dis-te3InSPyReNet (HR scale)
E-measure: 0.938
HCE: 522
MAE: 0.034
S-Measure: 0.918
max F-Measure: 0.919
weighted F-measure: 0.871
dichotomous-image-segmentation-on-dis-te3InSPyReNet
E-measure: 0.938
HCE: 582
MAE: 0.038
S-Measure: 0.902
max F-Measure: 0.904
weighted F-measure: 0.856
dichotomous-image-segmentation-on-dis-te4InSPyReNet
E-measure: 0.926
HCE: 2243
MAE: 0.046
S-Measure: 0.891
max F-Measure: 0.892
weighted F-measure: 0.840
dichotomous-image-segmentation-on-dis-te4InSPyReNet (HR scale)
E-measure: 0.926
HCE: 2336
MAE: 0.042
S-Measure: 0.905
max F-Measure: 0.905
weighted F-measure: 0.848
dichotomous-image-segmentation-on-dis-vdInSPyReNet (HR scale)
HCE: 904
S-Measure: 0.900
max F-Measure: 0.889
dichotomous-image-segmentation-on-dis-vdInSPyReNet
E-measure: 0.921
HCE: 905
MAE: 0.043
S-Measure: 0.887
max F-Measure: 0.876
weighted F-measure: 0.826
rgb-salient-object-detection-on-davis-sInSPyReNet (DUTS, HRSOD)
F-measure: 0.976
S-measure: 0.972
mBA: 0.770
rgb-salient-object-detection-on-davis-sInSPyReNet
F-measure: 0.959
MAE: 0.009
S-measure: 0.962
mBA: 0.743
rgb-salient-object-detection-on-hrsodInSPyReNet (HRSOD, UHRSD)
MAE: 0.018
S-Measure: 0.956
mBA: 0.771
max F-Measure: 0.956
rgb-salient-object-detection-on-hrsodInSPyReNet (DUTS, HRSOD)
MAE: 0.014
S-Measure: 0.960
mBA: 0.766
max F-Measure: 0.957
rgb-salient-object-detection-on-hrsodInSPyReNet
MAE: 0.016
S-Measure: 0.952
mBA: 0.738
max F-Measure: 0.949
rgb-salient-object-detection-on-uhrsdInSPyReNet (HRSOD, UHRSD)
MAE: 0.020
S-Measure: 0.953
mBA: 0.812
max F-Measure: 0.957
rgb-salient-object-detection-on-uhrsdInSPyReNet (DUTS, HRSOD)
S-Measure: 0.936
mBA: 0.785
rgb-salient-object-detection-on-uhrsdInSPyReNet
MAE: 0.029
S-Measure: 0.932
mBA: 0.741
max F-Measure: 0.938
salient-object-detection-on-dut-omronInSPyReNet
F-measure: 0.832
MAE: 0.045
S-Measure: 0.875
salient-object-detection-on-duts-teInSPyReNet
MAE: 0.024
S-Measure: 0.931
max F-measure: 0.892
salient-object-detection-on-ecssdInSPyReNet
F-measure: 0.96
MAE: 0.031
S-Measure: 0.936
salient-object-detection-on-hku-isInSPyReNet
F-measure: 0.955
MAE: 0.028
S-Measure: 0.944
salient-object-detection-on-pascal-sInSPyReNet
F-measure: 0.893
MAE: 0.048
S-Measure: 0.893

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Revisiting Image Pyramid Structure for High Resolution Salient Object Detection | Papers | HyperAI