HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

AOE-Net: Entities Interactions Modeling with Adaptive Attention Mechanism for Temporal Action Proposals Generation

Khoa Vo; Sang Truong; Kashu Yamazaki; Bhiksha Raj; Minh-Triet Tran; Ngan Le

AOE-Net: Entities Interactions Modeling with Adaptive Attention Mechanism for Temporal Action Proposals Generation

Abstract

Temporal action proposal generation (TAPG) is a challenging task, which requires localizing action intervals in an untrimmed video. Intuitively, we as humans, perceive an action through the interactions between actors, relevant objects, and the surrounding environment. Despite the significant progress of TAPG, a vast majority of existing methods ignore the aforementioned principle of the human perceiving process by applying a backbone network into a given video as a black-box. In this paper, we propose to model these interactions with a multi-modal representation network, namely, Actors-Objects-Environment Interaction Network (AOE-Net). Our AOE-Net consists of two modules, i.e., perception-based multi-modal representation (PMR) and boundary-matching module (BMM). Additionally, we introduce adaptive attention mechanism (AAM) in PMR to focus only on main actors (or relevant objects) and model the relationships among them. PMR module represents each video snippet by a visual-linguistic feature, in which main actors and surrounding environment are represented by visual information, whereas relevant objects are depicted by linguistic features through an image-text model. BMM module processes the sequence of visual-linguistic features as its input and generates action proposals. Comprehensive experiments and extensive ablation studies on ActivityNet-1.3 and THUMOS-14 datasets show that our proposed AOE-Net outperforms previous state-of-the-art methods with remarkable performance and generalization for both TAPG and temporal action detection. To prove the robustness and effectiveness of AOE-Net, we further conduct an ablation study on egocentric videos, i.e. EPIC-KITCHENS 100 dataset. Source code is available upon acceptance.

Code Repositories

uark-aicv/aoe-net
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
temporal-action-proposal-generation-onAOE-Net
AR@100: 77.67
AUC (test): 70.10
AUC (val): 69.71
temporal-action-proposal-generation-on-thumosAOE-Net + Soft-NMS
AR@100: 50.26
AR@1000: 68.19
AR@200: 57.30
AR@50: 44.56
AR@500: 64.32

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
AOE-Net: Entities Interactions Modeling with Adaptive Attention Mechanism for Temporal Action Proposals Generation | Papers | HyperAI