HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

A Simple and Strong Baseline for End-to-End Neural RST-style Discourse Parsing

Naoki Kobayashi; Tsutomu Hirao; Hidetaka Kamigaito; Manabu Okumura; Masaaki Nagata

A Simple and Strong Baseline for End-to-End Neural RST-style Discourse Parsing

Abstract

To promote and further develop RST-style discourse parsing models, we need a strong baseline that can be regarded as a reference for reporting reliable experimental results. This paper explores a strong baseline by integrating existing simple parsing strategies, top-down and bottom-up, with various transformer-based pre-trained language models. The experimental results obtained from two benchmark datasets demonstrate that the parsing performance strongly relies on the pretrained language models rather than the parsing strategies. In particular, the bottom-up parser achieves large performance gains compared to the current best parser when employing DeBERTa. We further reveal that language models with a span-masking scheme especially boost the parsing performance through our analysis within intra- and multi-sentential parsing, and nuclearity prediction.

Code Repositories

nttcslab-nlp/rstparser_emnlp22
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
discourse-parsing-on-instructional-dt-instrTop-down (XLNet)
Standard Parseval (Full): 40.2
Standard Parseval (Nuclearity): 55.2
Standard Parseval (Relation): 47.0
Standard Parseval (Span): 74.3
discourse-parsing-on-instructional-dt-instrBottom-up (DeBERTa)
Standard Parseval (Full): 44.4
Standard Parseval (Nuclearity): 60.0
Standard Parseval (Relation): 51.4
Standard Parseval (Span): 77.8
discourse-parsing-on-instructional-dt-instrTop-down (BERT)
Standard Parseval (Full): 30.9
Standard Parseval (Nuclearity): 44.6
Standard Parseval (Relation): 37.6
Standard Parseval (Span): 65.3
discourse-parsing-on-instructional-dt-instrTop-down (SpanBERT)
Standard Parseval (Full): 36.7
Standard Parseval (Nuclearity): 54.5
Standard Parseval (Relation): 42.7
Standard Parseval (Span): 73.7
discourse-parsing-on-instructional-dt-instrTop-down (DeBERTa)
Standard Parseval (Full): 43.4
Standard Parseval (Nuclearity): 57.9
Standard Parseval (Relation): 50.0
Standard Parseval (Span): 77.3
discourse-parsing-on-instructional-dt-instrBottom-up (SpanBERT)
Standard Parseval (Full): 40.5
Standard Parseval (Nuclearity): 53.8
Standard Parseval (Relation): 46.0
Standard Parseval (Span): 72.9
discourse-parsing-on-instructional-dt-instrTop-down (RoBERTa)
Standard Parseval (Full): 41.5
Standard Parseval (Nuclearity): 56.1
Standard Parseval (Relation): 48.7
Standard Parseval (Span): 75.7
discourse-parsing-on-instructional-dt-instrBottom-up (BERT)
Standard Parseval (Full): 32.9
Standard Parseval (Nuclearity): 46.3
Standard Parseval (Relation): 39.5
Standard Parseval (Span): 66.6
discourse-parsing-on-instructional-dt-instrBottom-up (XLNet)
Standard Parseval (Full): 40.7
Standard Parseval (Nuclearity): 56.4
Standard Parseval (Relation): 47.4
Standard Parseval (Span): 73.6
discourse-parsing-on-instructional-dt-instrBottom-up (RoBERTa)
Standard Parseval (Full): 41.4
Standard Parseval (Nuclearity): 55.5
Standard Parseval (Relation): 47.9
Standard Parseval (Span): 73.2
discourse-parsing-on-rst-dtTop-down (XLNet)
Standard Parseval (Full): 54.8
Standard Parseval (Nuclearity): 67.4
Standard Parseval (Relation): 57.0
Standard Parseval (Span): 77.8
discourse-parsing-on-rst-dtTop-down (SpanBERT)
Standard Parseval (Full): 52.2
Standard Parseval (Nuclearity): 65.4
Standard Parseval (Relation): 54.5
Standard Parseval (Span): 76.5
discourse-parsing-on-rst-dtBottom-up (DeBERTa)
Standard Parseval (Full): 55.4 ± 0.4
Standard Parseval (Nuclearity): 68.0 ± 0.5
Standard Parseval (Relation): 57.3 ± 0.2
Standard Parseval (Span): 77.8 ± 0.3
discourse-parsing-on-rst-dtBottom-up (RoBERTa)
Standard Parseval (Full): 53.7
Standard Parseval (Nuclearity): 66.5
Standard Parseval (Relation): 55.4
Standard Parseval (Span): 76.1
discourse-parsing-on-rst-dtBottom-up (SpanBERT)
Standard Parseval (Full): 52.7
Standard Parseval (Nuclearity): 65.3
Standard Parseval (Relation): 54.9
discourse-parsing-on-rst-dtTop-down (DeBERTa)
Standard Parseval (Full): 54.4
Standard Parseval (Nuclearity): 67.9
Standard Parseval (Relation): 56.6
Standard Parseval (Span): 78.5
discourse-parsing-on-rst-dtBottom-up (XLNet)
Standard Parseval (Full): 54.2
Standard Parseval (Nuclearity): 65.9
Standard Parseval (Relation): 56.3
discourse-parsing-on-rst-dtTop-down (RoBERTa)
Standard Parseval (Full): 53.8
Standard Parseval (Nuclearity): 66.6
Standard Parseval (Relation): 55.8
Standard Parseval (Span): 77.3
discourse-parsing-on-rst-dtTop-down (BERT)
Standard Parseval (Full): 46.6
Standard Parseval (Nuclearity): 59.1
Standard Parseval (Relation): 48.3
Standard Parseval (Span): 69.8
discourse-parsing-on-rst-dtBottom-up (BERT)
Standard Parseval (Full): 46.0
Standard Parseval (Nuclearity): 57.8
Standard Parseval (Relation): 47.8
Standard Parseval (Span): 68.3

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
A Simple and Strong Baseline for End-to-End Neural RST-style Discourse Parsing | Papers | HyperAI