HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Dense FixMatch: a simple semi-supervised learning method for pixel-wise prediction tasks

Miquel Martí i Rabadán Alessandro Pieropan Hossein Azizpour Atsuto Maki

Dense FixMatch: a simple semi-supervised learning method for pixel-wise prediction tasks

Abstract

We propose Dense FixMatch, a simple method for online semi-supervised learning of dense and structured prediction tasks combining pseudo-labeling and consistency regularization via strong data augmentation. We enable the application of FixMatch in semi-supervised learning problems beyond image classification by adding a matching operation on the pseudo-labels. This allows us to still use the full strength of data augmentation pipelines, including geometric transformations. We evaluate it on semi-supervised semantic segmentation on Cityscapes and Pascal VOC with different percentages of labeled data and ablate design choices and hyper-parameters. Dense FixMatch significantly improves results compared to supervised learning using only labeled data, approaching its performance with 1/4 of the labeled samples.

Code Repositories

miquelmarti/DenseFixMatch
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
semi-supervised-semantic-segmentation-on-15Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
Validation mIoU: 74.73%
semi-supervised-semantic-segmentation-on-15Dense FixMatch (DeepLabv3+ ResNet-50, over-sampling, single pass eval)
Validation mIoU: 71.69%
semi-supervised-semantic-segmentation-on-2Dense FixMatch (DeepLabv3+ ResNet-101, uniform sampling, single pass eval)
Validation mIoU: 73.91%
semi-supervised-semantic-segmentation-on-2Dense FixMatch (DeepLabv3+ ResNet-50, uniform sampling, single pass eval)
Validation mIoU: 73.39%
semi-supervised-semantic-segmentation-on-21Dense FixMatch (DeepLabv3+ ResNet-50, over-sampling, single pass eval)
Validation mIoU: 52.15
semi-supervised-semantic-segmentation-on-21Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
Validation mIoU: 54.85
semi-supervised-semantic-segmentation-on-22Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
Validation mIoU: 71.1%
semi-supervised-semantic-segmentation-on-22Dense FixMatch (DeepLabv3+ ResNet-50, uniform sampling, single pass eval)
Validation mIoU: 70.65%
semi-supervised-semantic-segmentation-on-35Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
Validation mIoU: 66.97
semi-supervised-semantic-segmentation-on-35Dense FixMatch (DeepLabv3+ ResNet-50, over-sampling, single-pass eval)
Validation mIoU: 65.81
semi-supervised-semantic-segmentation-on-4Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
Validation mIoU: 65.82%
semi-supervised-semantic-segmentation-on-4Dense FixMatch (DeepLabv3+ ResNet-50, over-sampling, single pass eval)
Validation mIoU: 62.49%
semi-supervised-semantic-segmentation-on-40Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
Validation mIoU: 80.82
semi-supervised-semantic-segmentation-on-40Dense FixMatch (DeepLabv3+ ResNet-50, over-sampling, single pass eval)
Validation mIoU: 79.98
semi-supervised-semantic-segmentation-on-9Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
Validation mIoU: 72.04
semi-supervised-semantic-segmentation-on-9Dense FixMatch (DeepLabv3+ ResNet-50, over-sampling, single pass eval)
Validation mIoU: 69.02

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp