HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Fourier-Net: Fast Image Registration with Band-limited Deformation

Xi Jia; Joseph Bartlett; Wei Chen; Siyang Song; Tianyang Zhang; Xinxing Cheng; Wenqi Lu; Zhaowen Qiu; Jinming Duan

Fourier-Net: Fast Image Registration with Band-limited Deformation

Abstract

Unsupervised image registration commonly adopts U-Net style networks to predict dense displacement fields in the full-resolution spatial domain. For high-resolution volumetric image data, this process is however resource-intensive and time-consuming. To tackle this problem, we propose the Fourier-Net, replacing the expansive path in a U-Net style network with a parameter-free model-driven decoder. Specifically, instead of our Fourier-Net learning to output a full-resolution displacement field in the spatial domain, we learn its low-dimensional representation in a band-limited Fourier domain. This representation is then decoded by our devised model-driven decoder (consisting of a zero padding layer and an inverse discrete Fourier transform layer) to the dense, full-resolution displacement field in the spatial domain. These changes allow our unsupervised Fourier-Net to contain fewer parameters and computational operations, resulting in faster inference speeds. Fourier-Net is then evaluated on two public 3D brain datasets against various state-of-the-art approaches. For example, when compared to a recent transformer-based method, named TransMorph, our Fourier-Net, which only uses 2.2\% of its parameters and 6.66\% of the multiply-add operations, achieves a 0.5\% higher Dice score and an 11.48 times faster inference speed. Code is available at \url{https://github.com/xi-jia/Fourier-Net}.

Code Repositories

xi-jia/fourier-net
Official
pytorch

Benchmarks

BenchmarkMethodologyMetrics
medical-image-registration-on-oasisFourier-Net
val dsc: 84.7

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Fourier-Net: Fast Image Registration with Band-limited Deformation | Papers | HyperAI