HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Prototypical Residual Networks for Anomaly Detection and Localization

Hui Zhang Zuxuan Wu Zheng Wang Zhineng Chen Yu-Gang Jiang

Prototypical Residual Networks for Anomaly Detection and Localization

Abstract

Anomaly detection and localization are widely used in industrial manufacturing for its efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models easily over-fit to these seen anomalies with a handful of abnormal samples, producing unsatisfactory performance. On the other hand, anomalies are typically subtle, hard to discern, and of various appearance, making it difficult to detect anomalies and let alone locate anomalous regions. To address these issues, we propose a framework called Prototypical Residual Network (PRN), which learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions. PRN mainly consists of two parts: multi-scale prototypes that explicitly represent the residual features of anomalies to normal patterns; a multisize self-attention mechanism that enables variable-sized anomalous feature learning. Besides, we present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies. Extensive experiments on the challenging and widely used MVTec AD benchmark show that PRN outperforms current state-of-the-art unsupervised and supervised methods. We further report SOTA results on three additional datasets to demonstrate the effectiveness and generalizability of PRN.

Benchmarks

BenchmarkMethodologyMetrics
supervised-anomaly-detection-on-mvtec-adPRN
Detection AUROC: 99.4
Segmentation AP: 78.6
Segmentation AUPRO: 96.1
Segmentation AUROC: 99.0

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Prototypical Residual Networks for Anomaly Detection and Localization | Papers | HyperAI