HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Learning with Noisy labels via Self-supervised Adversarial Noisy Masking

Yuanpeng Tu Boshen Zhang Yuxi Li Liang Liu Jian Li Jiangning Zhang Yabiao Wang Chengjie Wang Cai Rong Zhao

Learning with Noisy labels via Self-supervised Adversarial Noisy Masking

Abstract

Collecting large-scale datasets is crucial for training deep models, annotating the data, however, inevitably yields noisy labels, which poses challenges to deep learning algorithms. Previous efforts tend to mitigate this problem via identifying and removing noisy samples or correcting their labels according to the statistical properties (e.g., loss values) among training samples. In this paper, we aim to tackle this problem from a new perspective, delving into the deep feature maps, we empirically find that models trained with clean and mislabeled samples manifest distinguishable activation feature distributions. From this observation, a novel robust training approach termed adversarial noisy masking is proposed. The idea is to regularize deep features with a label quality guided masking scheme, which adaptively modulates the input data and label simultaneously, preventing the model to overfit noisy samples. Further, an auxiliary task is designed to reconstruct input data, it naturally provides noise-free self-supervised signals to reinforce the generalization ability of deep models. The proposed method is simple and flexible, it is tested on both synthetic and real-world noisy datasets, where significant improvements are achieved over previous state-of-the-art methods.

Code Repositories

yuanpengtu/SANM
Official
pytorch

Benchmarks

BenchmarkMethodologyMetrics
image-classification-on-clothing1mSANM (DivideMix)
Accuracy: 75.63%

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Learning with Noisy labels via Self-supervised Adversarial Noisy Masking | Papers | HyperAI