HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Adaptive Axonal Delays in feedforward spiking neural networks for accurate spoken word recognition

Pengfei Sun Ehsan Eqlimi Yansong Chua Paul Devos Dick Botteldooren

Adaptive Axonal Delays in feedforward spiking neural networks for accurate spoken word recognition

Abstract

Spiking neural networks (SNN) are a promising research avenue for building accurate and efficient automatic speech recognition systems. Recent advances in audio-to-spike encoding and training algorithms enable SNN to be applied in practical tasks. Biologically-inspired SNN communicates using sparse asynchronous events. Therefore, spike-timing is critical to SNN performance. In this aspect, most works focus on training synaptic weights and few have considered delays in event transmission, namely axonal delay. In this work, we consider a learnable axonal delay capped at a maximum value, which can be adapted according to the axonal delay distribution in each network layer. We show that our proposed method achieves the best classification results reported on the SHD dataset (92.45%) and NTIDIGITS dataset (95.09%). Our work illustrates the potential of training axonal delays for tasks with complex temporal structures.

Benchmarks

BenchmarkMethodologyMetrics
audio-classification-on-shdSNN featuring learnable axonal delays with adaptively delay caps
Percentage correct: 92.45

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Adaptive Axonal Delays in feedforward spiking neural networks for accurate spoken word recognition | Papers | HyperAI