HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Pixel Difference Convolutional Network for RGB-D Semantic Segmentation

Jun Yang Lizhi Bai Yaoru Sun Chunqi Tian Maoyu Mao Guorun Wang

Pixel Difference Convolutional Network for RGB-D Semantic Segmentation

Abstract

RGB-D semantic segmentation can be advanced with convolutional neural networks due to the availability of Depth data. Although objects cannot be easily discriminated by just the 2D appearance, with the local pixel difference and geometric patterns in Depth, they can be well separated in some cases. Considering the fixed grid kernel structure, CNNs are limited to lack the ability to capture detailed, fine-grained information and thus cannot achieve accurate pixel-level semantic segmentation. To solve this problem, we propose a Pixel Difference Convolutional Network (PDCNet) to capture detailed intrinsic patterns by aggregating both intensity and gradient information in the local range for Depth data and global range for RGB data, respectively. Precisely, PDCNet consists of a Depth branch and an RGB branch. For the Depth branch, we propose a Pixel Difference Convolution (PDC) to consider local and detailed geometric information in Depth data via aggregating both intensity and gradient information. For the RGB branch, we contribute a lightweight Cascade Large Kernel (CLK) to extend PDC, namely CPDC, to enjoy global contexts for RGB data and further boost performance. Consequently, both modal data's local and global pixel differences are seamlessly incorporated into PDCNet during the information propagation process. Experiments on two challenging benchmark datasets, i.e., NYUDv2 and SUN RGB-D reveal that our PDCNet achieves state-of-the-art performance for the semantic segmentation task.

Benchmarks

BenchmarkMethodologyMetrics
semantic-segmentation-on-nyu-depth-v2PDCNet (ResNet-101)
Mean IoU: 53.5%
semantic-segmentation-on-sun-rgbdCMX (B4)
Mean IoU: 49.6%

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Pixel Difference Convolutional Network for RGB-D Semantic Segmentation | Papers | HyperAI