HyperAIHyperAI

Command Palette

Search for a command to run...

Joint Learning of Blind Super-Resolution and Crack Segmentation for Realistic Degraded Images

Yuki Kondo Norimichi Ukita

Abstract

This paper proposes crack segmentation augmented by super resolution (SR) with deep neural networks. In the proposed method, a SR network is jointly trained with a binary segmentation network in an end-to-end manner. This joint learning allows the SR network to be optimized for improving segmentation results. For realistic scenarios, the SR network is extended from non-blind to blind for processing a low-resolution image degraded by unknown blurs. The joint network is improved by our proposed two extra paths that further encourage the mutual optimization between SR and segmentation. Comparative experiments with State of The Art (SoTA) segmentation methods demonstrate the superiority of our joint learning, and various ablation studies prove the effects of our contributions.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Joint Learning of Blind Super-Resolution and Crack Segmentation for Realistic Degraded Images | Papers | HyperAI