HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

VVS: Video-to-Video Retrieval with Irrelevant Frame Suppression

Won Jo Geuntaek Lim Gwangjin Lee Hyunwoo Kim Byungsoo Ko Yukyung Choi

VVS: Video-to-Video Retrieval with Irrelevant Frame Suppression

Abstract

In content-based video retrieval (CBVR), dealing with large-scale collections, efficiency is as important as accuracy; thus, several video-level feature-based studies have actively been conducted. Nevertheless, owing to the severe difficulty of embedding a lengthy and untrimmed video into a single feature, these studies have been insufficient for accurate retrieval compared to frame-level feature-based studies. In this paper, we show that appropriate suppression of irrelevant frames can provide insight into the current obstacles of the video-level approaches. Furthermore, we propose a Video-to-Video Suppression network (VVS) as a solution. VVS is an end-to-end framework that consists of an easy distractor elimination stage to identify which frames to remove and a suppression weight generation stage to determine the extent to suppress the remaining frames. This structure is intended to effectively describe an untrimmed video with varying content and meaningless information. Its efficacy is proved via extensive experiments, and we show that our approach is not only state-of-the-art in video-level approaches but also has a fast inference time despite possessing retrieval capabilities close to those of frame-level approaches. Code is available at https://github.com/sejong-rcv/VVS

Code Repositories

sejong-rcv/VVS
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
video-retrieval-on-fivr-200kVVS
mAP (CSVR): 0.689
mAP (DSVR): 0.711
mAP (ISVR): 0.590

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
VVS: Video-to-Video Retrieval with Irrelevant Frame Suppression | Papers | HyperAI