Command Palette
Search for a command to run...
EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies
Kilian Batzner Lars Heckler Rebecca König

Abstract
Detecting anomalies in images is an important task, especially in real-time computer vision applications. In this work, we focus on computational efficiency and propose a lightweight feature extractor that processes an image in less than a millisecond on a modern GPU. We then use a student-teacher approach to detect anomalous features. We train a student network to predict the extracted features of normal, i.e., anomaly-free training images. The detection of anomalies at test time is enabled by the student failing to predict their features. We propose a training loss that hinders the student from imitating the teacher feature extractor beyond the normal images. It allows us to drastically reduce the computational cost of the student-teacher model, while improving the detection of anomalous features. We furthermore address the detection of challenging logical anomalies that involve invalid combinations of normal local features, for example, a wrong ordering of objects. We detect these anomalies by efficiently incorporating an autoencoder that analyzes images globally. We evaluate our method, called EfficientAD, on 32 datasets from three industrial anomaly detection dataset collections. EfficientAD sets new standards for both the detection and the localization of anomalies. At a latency of two milliseconds and a throughput of six hundred images per second, it enables a fast handling of anomalies. Together with its low error rate, this makes it an economical solution for real-world applications and a fruitful basis for future research.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| anomaly-detection-on-mvtec-ad | EfficientAD-M | Detection AUROC: 99.1 FPS: 269 Segmentation AUPRO: 93.5 |
| anomaly-detection-on-mvtec-ad | EfficientAD-S | Detection AUROC: 98.7 FPS: 614 Segmentation AP: 65.9 Segmentation AUPRO: 93.1 |
| anomaly-detection-on-mvtec-ad | EfficientAD (early stopping) | Detection AUROC: 99.8 FPS: 269 |
| anomaly-detection-on-mvtec-loco-ad | EfficientAD-M | Avg. Detection AUROC: 90.7 Detection AUROC (only logical): 86.8 Detection AUROC (only structural): 94.7 Segmentation AU-sPRO (until FPR 5%): 79.8 |
| anomaly-detection-on-mvtec-loco-ad | EfficientAD-S | Avg. Detection AUROC: 90.0 Detection AUROC (only logical): 85.8 Detection AUROC (only structural): 94.1 Segmentation AU-sPRO (until FPR 5%): 77.8 |
| anomaly-detection-on-visa | EfficientAD-S | Detection AUROC: 97.5 Segmentation AUPRO (until 30% FPR): 93.1 |
| anomaly-detection-on-visa | EfficientAD-M | Detection AUROC: 98.1 Segmentation AUPRO (until 30% FPR): 94.0 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.