HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild

Avinab Saha Sandeep Mishra Alan C. Bovik

Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild

Abstract

Automatic Perceptual Image Quality Assessment is a challenging problem that impacts billions of internet, and social media users daily. To advance research in this field, we propose a Mixture of Experts approach to train two separate encoders to learn high-level content and low-level image quality features in an unsupervised setting. The unique novelty of our approach is its ability to generate low-level representations of image quality that are complementary to high-level features representing image content. We refer to the framework used to train the two encoders as Re-IQA. For Image Quality Assessment in the Wild, we deploy the complementary low and high-level image representations obtained from the Re-IQA framework to train a linear regression model, which is used to map the image representations to the ground truth quality scores, refer Figure 1. Our method achieves state-of-the-art performance on multiple large-scale image quality assessment databases containing both real and synthetic distortions, demonstrating how deep neural networks can be trained in an unsupervised setting to produce perceptually relevant representations. We conclude from our experiments that the low and high-level features obtained are indeed complementary and positively impact the performance of the linear regressor. A public release of all the codes associated with this work will be made available on GitHub.

Code Repositories

avinabsaha/ReIQA
Official
pytorch
Mentioned in GitHub
miccunifi/arniqa
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
no-reference-image-quality-assessment-onRe-IQA
PLCC: 0.861
SRCC: 0.804
no-reference-image-quality-assessment-on-1Re-IQA
PLCC: 0.885
SRCC: 0.872
no-reference-image-quality-assessment-on-csiqRe-IQA
PLCC: 0.960
SRCC: 0.947

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild | Papers | HyperAI