HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

SRRM: Semantic Region Relation Model for Indoor Scene Recognition

Chuanxin Song Xin Ma

SRRM: Semantic Region Relation Model for Indoor Scene Recognition

Abstract

Despite the remarkable success of convolutional neural networks in various computer vision tasks, recognizing indoor scenes still presents a significant challenge due to their complex composition. Consequently, effectively leveraging semantic information in the scene has been a key issue in advancing indoor scene recognition. Unfortunately, the accuracy of semantic segmentation has limited the effectiveness of existing approaches for leveraging semantic information. As a result, many of these approaches remain at the stage of auxiliary labeling or co-occurrence statistics, with few exploring the contextual relationships between the semantic elements directly within the scene. In this paper, we propose the Semantic Region Relationship Model (SRRM), which starts directly from the semantic information inside the scene. Specifically, SRRM adopts an adaptive and efficient approach to mitigate the negative impact of semantic ambiguity and then models the semantic region relationship to perform scene recognition. Additionally, to more comprehensively exploit the information contained in the scene, we combine the proposed SRRM with the PlacesCNN module to create the Combined Semantic Region Relation Model (CSRRM), and propose a novel information combining approach to effectively explore the complementary contents between them. CSRRM significantly outperforms the SOTA methods on the MIT Indoor 67, reduced Places365 dataset, and SUN RGB-D without retraining. The code is available at: https://github.com/ChuanxinSong/SRRM

Code Repositories

ChuanxinSong/SRRM
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
scene-recognition-on-mit-indoors-scenesCSSRM
10-stage average accuracy: 88.731

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
SRRM: Semantic Region Relation Model for Indoor Scene Recognition | Papers | HyperAI