HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation

Wenjing Wang Huan Yang Zixi Tuo Huiguo He Junchen Zhu Jianlong Fu Jiaying Liu

Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation

Abstract

With the explosive popularity of AI-generated content (AIGC), video generation has recently received a lot of attention. Generating videos guided by text instructions poses significant challenges, such as modeling the complex relationship between space and time, and the lack of large-scale text-video paired data. Existing text-video datasets suffer from limitations in both content quality and scale, or they are not open-source, rendering them inaccessible for study and use. For model design, previous approaches extend pretrained text-to-image generation models by adding temporal 1D convolution/attention modules for video generation. However, these approaches overlook the importance of jointly modeling space and time, inevitably leading to temporal distortions and misalignment between texts and videos. In this paper, we propose a novel approach that strengthens the interaction between spatial and temporal perceptions. In particular, we utilize a swapped cross-attention mechanism in 3D windows that alternates the "query" role between spatial and temporal blocks, enabling mutual reinforcement for each other. Moreover, to fully unlock model capabilities for high-quality video generation and promote the development of the field, we curate a large-scale and open-source video dataset called HD-VG-130M. This dataset comprises 130 million text-video pairs from the open-domain, ensuring high-definition, widescreen and watermark-free characters. A smaller-scale yet more meticulously cleaned subset further enhances the data quality, aiding models in achieving superior performance. Experimental quantitative and qualitative results demonstrate the superiority of our approach in terms of per-frame quality, temporal correlation, and text-video alignment, with clear margins.

Code Repositories

daooshee/hd-vg-130m
Official
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
text-to-video-generation-on-webvidVideoFactory
FVD: 292.35

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation | Papers | HyperAI