HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

MvP: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction

Zhibin Gou; Qingyan Guo; Yujiu Yang

MvP: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction

Abstract

Generative methods greatly promote aspect-based sentiment analysis via generating a sequence of sentiment elements in a specified format. However, existing studies usually predict sentiment elements in a fixed order, which ignores the effect of the interdependence of the elements in a sentiment tuple and the diversity of language expression on the results. In this work, we propose Multi-view Prompting (MvP) that aggregates sentiment elements generated in different orders, leveraging the intuition of human-like problem-solving processes from different views. Specifically, MvP introduces element order prompts to guide the language model to generate multiple sentiment tuples, each with a different element order, and then selects the most reasonable tuples by voting. MvP can naturally model multi-view and multi-task as permutations and combinations of elements, respectively, outperforming previous task-specific designed methods on multiple ABSA tasks with a single model. Extensive experiments show that MvP significantly advances the state-of-the-art performance on 10 datasets of 4 benchmark tasks, and performs quite effectively in low-resource settings. Detailed evaluation verified the effectiveness, flexibility, and cross-task transferability of MvP.

Code Repositories

ZubinGou/multi-view-prompting
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
aspect-based-sentiment-analysis-absa-on-acosChatGPT (gpt-3.5-turbo, few-shot)
F1 (Restaurant): 37.71
aspect-based-sentiment-analysis-absa-on-acosMvP (muilti-task)
F1 (Laptop): 43.84
F1 (Restaurant): 60.36
aspect-based-sentiment-analysis-absa-on-acosChatGPT (gpt-3.5-turbo, zero-shot)
F1 (Restaurant): 27.11
aspect-based-sentiment-analysis-absa-on-acosMvP
F1 (Laptop): 43.92
F1 (Restaurant): 61.54
aspect-based-sentiment-analysis-absa-on-asqpChatGPT (gpt-3.5-turbo, few-shot)
F1 (R15): 34.27
aspect-based-sentiment-analysis-absa-on-asqpMvP (multi-task)
F1 (R15): 52.21
F1 (R16): 58.94
aspect-based-sentiment-analysis-absa-on-asqpChatGPT (gpt-3.5-turbo, zero-shot)
F1 (R15): 22.87
aspect-based-sentiment-analysis-absa-on-asqpMvP
F1 (R15): 51.04
F1 (R16): 60.39
aspect-based-sentiment-analysis-absa-on-asteMvP (multi-task)
F1 (L14): 65.30
F1 (R15): 69.44
F1 (R16): 73.10
F1(R14): 76.30
aspect-based-sentiment-analysis-absa-on-asteChatGPT (gpt-3.5-turbo, few-shot)
F1 (L14): 38.12
aspect-based-sentiment-analysis-absa-on-asteChatGPT (gpt-3.5-turbo, zero-shot)
F1 (L14): 36.05
aspect-based-sentiment-analysis-absa-on-asteMvP
F1 (L14): 63.33
F1 (R15): 65.89
F1 (R16): 73.48
F1(R14): 74.05
aspect-based-sentiment-analysis-absa-on-tasdMvP (multi-task)
F1 (R15): 64.74
F1 (R16): 70.18
aspect-based-sentiment-analysis-absa-on-tasdChatGPT (gpt-3.5-turbo, zero-shot)
F1 (R16): 34.08
aspect-based-sentiment-analysis-absa-on-tasdMvP
F1 (R15): 64.53
F1 (R16): 72.76
aspect-based-sentiment-analysis-absa-on-tasdChatGPT (gpt-3.5-turbo, few-shot)
F1 (R16): 46.51

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
MvP: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction | Papers | HyperAI