HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations

Hao Chen Ankit Shah Jindong Wang Ran Tao Yidong Wang Xing Xie Masashi Sugiyama Rita Singh Bhiksha Raj

Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations

Abstract

Learning with reduced labeling standards, such as noisy label, partial label, and multiple label candidates, which we generically refer to as \textit{imprecise} labels, is a commonplace challenge in machine learning tasks. Previous methods tend to propose specific designs for every emerging imprecise label configuration, which is usually unsustainable when multiple configurations of imprecision coexist. In this paper, we introduce imprecise label learning (ILL), a framework for the unification of learning with various imprecise label configurations. ILL leverages expectation-maximization (EM) for modeling the imprecise label information, treating the precise labels as latent variables.Instead of approximating the correct labels for training, it considers the entire distribution of all possible labeling entailed by the imprecise information. We demonstrate that ILL can seamlessly adapt to partial label learning, semi-supervised learning, noisy label learning, and, more importantly, a mixture of these settings. Notably, ILL surpasses the existing specified techniques for handling imprecise labels, marking the first unified framework with robust and effective performance across various challenging settings. We hope our work will inspire further research on this topic, unleashing the full potential of ILL in wider scenarios where precise labels are expensive and complicated to obtain.

Code Repositories

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations | Papers | HyperAI