HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

APRIL-GAN: A Zero-/Few-Shot Anomaly Classification and Segmentation Method for CVPR 2023 VAND Workshop Challenge Tracks 1&2: 1st Place on Zero-shot AD and 4th Place on Few-shot AD

Xuhai Chen Yue Han Jiangning Zhang

APRIL-GAN: A Zero-/Few-Shot Anomaly Classification and Segmentation Method for CVPR 2023 VAND Workshop Challenge Tracks 1&2: 1st Place on Zero-shot AD and 4th Place on Few-shot AD

Abstract

In this technical report, we briefly introduce our solution for the Zero/Few-shot Track of the Visual Anomaly and Novelty Detection (VAND) 2023 Challenge. For industrial visual inspection, building a single model that can be rapidly adapted to numerous categories without or with only a few normal reference images is a promising research direction. This is primarily because of the vast variety of the product types. For the zero-shot track, we propose a solution based on the CLIP model by adding extra linear layers. These layers are used to map the image features to the joint embedding space, so that they can compare with the text features to generate the anomaly maps. Besides, when the reference images are available, we utilize multiple memory banks to store their features and compare them with the features of the test images during the testing phase. In this challenge, our method achieved first place in the zero-shot track, especially excelling in segmentation with an impressive F1 score improvement of 0.0489 over the second-ranked participant. Furthermore, in the few-shot track, we secured the fourth position overall, with our classification F1 score of 0.8687 ranking first among all participating teams.

Code Repositories

bychelsea/vand-april-gan
Official
pytorch
Mentioned in GitHub
hq-deng/AnoVL
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
anomaly-classification-on-visaAPRIL-GAN
Detection AUROC: 78.0
anomaly-detection-on-mvtec-adAPRIL-GAN(zero-shot)
Detection AUROC: 86.1
Segmentation AP: 40.8
Segmentation AUPRO: 44.0
Segmentation AUROC: 87.6
anomaly-detection-on-visaAPRIL-GAN
Detection AUROC: 78.0
F1-Score: 32.3
Segmentation AUPRO: 86.8
Segmentation AUROC: 94.2

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
APRIL-GAN: A Zero-/Few-Shot Anomaly Classification and Segmentation Method for CVPR 2023 VAND Workshop Challenge Tracks 1&2: 1st Place on Zero-shot AD and 4th Place on Few-shot AD | Papers | HyperAI