HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Stimulating Diffusion Model for Image Denoising via Adaptive Embedding and Ensembling

Li Tong ; Feng Hansen ; Wang Lizhi ; Xiong Zhiwei ; Huang Hua

Stimulating Diffusion Model for Image Denoising via Adaptive Embedding
  and Ensembling

Abstract

Image denoising is a fundamental problem in computational photography, whereachieving high perception with low distortion is highly demanding. Currentmethods either struggle with perceptual quality or suffer from significantdistortion. Recently, the emerging diffusion model has achievedstate-of-the-art performance in various tasks and demonstrates great potentialfor image denoising. However, stimulating diffusion models for image denoisingis not straightforward and requires solving several critical problems. For onething, the input inconsistency hinders the connection between diffusion modelsand image denoising. For another, the content inconsistency between thegenerated image and the desired denoised image introduces distortion. To tacklethese problems, we present a novel strategy called the Diffusion Model forImage Denoising (DMID) by understanding and rethinking the diffusion model froma denoising perspective. Our DMID strategy includes an adaptive embeddingmethod that embeds the noisy image into a pre-trained unconditional diffusionmodel and an adaptive ensembling method that reduces distortion in the denoisedimage. Our DMID strategy achieves state-of-the-art performance on bothdistortion-based and perception-based metrics, for both Gaussian and real-worldimage denoising.The code is available at https://github.com/Li-Tong-621/DMID.

Code Repositories

li-tong-621/dmid
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
color-image-denoising-on-cbsd68-sigma100DMID-d
LPIPS: 0.283
PSNR: 25.96
SSIM: 0.8413
color-image-denoising-on-cbsd68-sigma100DMID-p
LPIPS: 0.208
PSNR: 23.94
SSIM: 0.7840
color-image-denoising-on-cbsd68-sigma15DMID-d
PSNR: 34.45
color-image-denoising-on-cbsd68-sigma150DMID-d
LPIPS: 0.361
PSNR: 24.54
SSIM: 0.8001
color-image-denoising-on-cbsd68-sigma150DMID-p
LPIPS: 0.264
PSNR: 22.47
SSIM: 0.7314
color-image-denoising-on-cbsd68-sigma200DMID-p
LPIPS: 0.312
PSNR: 21.37
SSIM: 0.6842
color-image-denoising-on-cbsd68-sigma200DMID-d
LPIPS: 0.392
PSNR: 23.57
SSIM: 0.7686
color-image-denoising-on-cbsd68-sigma25DMID-d
PSNR: 31.86
color-image-denoising-on-cbsd68-sigma250DMID-d
LPIPS: 0.455
PSNR: 22.88
SSIM: 0.7462
color-image-denoising-on-cbsd68-sigma250DMID-p
LPIPS: 0.352
PSNR: 20.77
SSIM: 0.6610
color-image-denoising-on-cbsd68-sigma50DMID-d (MMSE)
LPIPS: 0.162
PSNR: 28.69
SSIM: 0.9029
color-image-denoising-on-cbsd68-sigma50DMID-p
LPIPS: 0.122
PSNR: 26.63
SSIM: 0.8605
color-image-denoising-on-cbsd68-sigma50DMID-d
PSNR: 28.69
color-image-denoising-on-imagenet-sigma100DMID-p
LPIPS: 0.156
PSNR: 24.61
SSIM: 0.7987
color-image-denoising-on-imagenet-sigma100DMID-d
LPIPS: 0.201
PSNR: 27.00
SSIM: 0.8626
color-image-denoising-on-imagenet-sigma150DMID-p
LPIPS: 0.259
PSNR: 22.94
SSIM: 0.6932
color-image-denoising-on-imagenet-sigma150DMID-d
LPIPS: 0.295
PSNR: 25.39
SSIM: 0.8236
color-image-denoising-on-imagenet-sigma200DMID-p
LPIPS: 0.259
PSNR: 21.56
SSIM: 0.6932
color-image-denoising-on-imagenet-sigma200DMID-d
LPIPS: 0.295
PSNR: 24.25
SSIM: 0.7915
color-image-denoising-on-imagenet-sigma250DMID-d
LPIPS: 0.346
PSNR: 23.44
SSIM: 0.7675
color-image-denoising-on-imagenet-sigma250DMID-p
LPIPS: 0.289
PSNR: 20.87
SSIM: 0.6701
color-image-denoising-on-imagenet-sigma50DMID-d
LPIPS: 0.114
PSNR: 29.9
SSIM: 0.9157
color-image-denoising-on-imagenet-sigma50DMID-p
LPIPS: 0.087
PSNR: 27.59
SSIM: 0.8722
color-image-denoising-on-kodak-sigma50DMID-d
PSNR: 30.14
color-image-denoising-on-kodak24-sigma100DMID-d
LPIPS: 0.274
PSNR: 27.5
SSIM: 0.8682
color-image-denoising-on-kodak24-sigma100DMID-p
LPIPS: 0.211
PSNR: 25.31
SSIM: 0.8107
color-image-denoising-on-kodak24-sigma15DMID-d
PSNR: 35.51
color-image-denoising-on-kodak24-sigma150DMID-d
LPIPS: 0.348
PSNR: 26.08
SSIM: 0.8336
color-image-denoising-on-kodak24-sigma150DMID-p
LPIPS: 0.211
PSNR: 24.06
SSIM: 0.7707
color-image-denoising-on-kodak24-sigma200DMID-d
LPIPS: 0.382
PSNR: 25.08
SSIM: 0.8054
color-image-denoising-on-kodak24-sigma200DMID-p
LPIPS: 0.318
PSNR: 22.99
SSIM: 0.7311
color-image-denoising-on-kodak24-sigma25DMID-d
PSNR: 33.12
color-image-denoising-on-kodak24-sigma250DMID-d
LPIPS: 0.446
PSNR: 24.4
SSIM: 0.7853
color-image-denoising-on-kodak24-sigma250DMID-p
LPIPS: 0.356
PSNR: 22.44
SSIM: 0.7133
color-image-denoising-on-kodak24-sigma50DMID-d(MMSE)
LPIPS: 0.172
PSNR: 30.13
SSIM: 0.9174
color-image-denoising-on-kodak24-sigma50DMID-p
LPIPS: 0.131
PSNR: 27.9
SSIM: 0.8770
color-image-denoising-on-mcmaster-sigma100DMID-p
LPIPS: 0.158
PSNR: 25.37
SSIM: 0.8560
color-image-denoising-on-mcmaster-sigma100DMID-d
LPIPS: 0.206
PSNR: 27.57
SSIM: 0.8990
color-image-denoising-on-mcmaster-sigma15DMID-d
PSNR: 35.72
color-image-denoising-on-mcmaster-sigma150DMID-p
LPIPS: 0.209
PSNR: 23.72
SSIM: 0.8148
color-image-denoising-on-mcmaster-sigma150DMID-d
LPIPS: 0.267
PSNR: 25.89
SSIM: 0.8672
color-image-denoising-on-mcmaster-sigma200DMID-p
LPIPS: 0.252
PSNR: 22.51
SSIM: 0.7816
color-image-denoising-on-mcmaster-sigma200DMID-d
LPIPS: 0.303
PSNR: 24.68
SSIM: 0.8392
color-image-denoising-on-mcmaster-sigma25DMID-d
PSNR: 33.49
color-image-denoising-on-mcmaster-sigma250DMID-d
LPIPS: 0.359
PSNR: 23.81
SSIM: 0.8174
color-image-denoising-on-mcmaster-sigma250DMID-p
LPIPS: 0.290
PSNR: 21.73
SSIM: 0.7553
color-image-denoising-on-mcmaster-sigma50DMID-d(MMSE)
LPIPS: 0.124
SSIM: 0.9396
color-image-denoising-on-mcmaster-sigma50DMID-d
PSNR: 30.51
color-image-denoising-on-mcmaster-sigma50DMID-p
LPIPS: 0.092
PSNR: 28.34
SSIM: 0.9112
color-image-denoising-on-urban100-sigma15-1DMID-d
Average PSNR: 35.26
PSNR: 35.26
color-image-denoising-on-urban100-sigma25DMID-d
PSNR: 33.11
color-image-denoising-on-urban100-sigma50DMID-d
PSNR: 30.28

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Stimulating Diffusion Model for Image Denoising via Adaptive Embedding and Ensembling | Papers | HyperAI