HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

LaRS: A Diverse Panoptic Maritime Obstacle Detection Dataset and Benchmark

Lojze Žust Janez Perš Matej Kristan

LaRS: A Diverse Panoptic Maritime Obstacle Detection Dataset and Benchmark

Abstract

The progress in maritime obstacle detection is hindered by the lack of a diverse dataset that adequately captures the complexity of general maritime environments. We present the first maritime panoptic obstacle detection benchmark LaRS, featuring scenes from Lakes, Rivers and Seas. Our major contribution is the new dataset, which boasts the largest diversity in recording locations, scene types, obstacle classes, and acquisition conditions among the related datasets. LaRS is composed of over 4000 per-pixel labeled key frames with nine preceding frames to allow utilization of the temporal texture, amounting to over 40k frames. Each key frame is annotated with 8 thing, 3 stuff classes and 19 global scene attributes. We report the results of 27 semantic and panoptic segmentation methods, along with several performance insights and future research directions. To enable objective evaluation, we have implemented an online evaluation server. The LaRS dataset, evaluation toolkit and benchmark are publicly available at: https://lojzezust.github.io/lars-dataset

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
panoptic-segmentation-on-larsPanoptic FPN (ResNet-101)
PQ: 38.7
panoptic-segmentation-on-larsMask2Former (Swin-T)
PQ: 39.2
panoptic-segmentation-on-larsPanoptic Deeplab (ResNet-50)
PQ: 34.7
panoptic-segmentation-on-larsMask2Former (ResNet-50)
PQ: 37.6
panoptic-segmentation-on-larsMask2Former (ResNet-101)
PQ: 37.2
panoptic-segmentation-on-larsMask2Former (Swin-B)
PQ: 41.7
panoptic-segmentation-on-larsPanoptic FPN (ResNet-50)
PQ: 40.1
panoptic-segmentation-on-larsMaX-DeepLab
PQ: 31.9
semantic-segmentation-on-larsBiSeNetv1 (ResNet-50)
F1: 42.8
Q: 39.4
mIoU: 92.2
μ: 73.3
semantic-segmentation-on-larsSTDC1
F1: 61.8
Q: 57.8
mIoU: 93.6
μ: 75.6
semantic-segmentation-on-larsSTDC2
F1: 64.3
Q: 60.8
mIoU: 94.5
μ: 76.5
semantic-segmentation-on-larsBiSeNetv2
F1: 54.7
Q: 51.2
mIoU: 93.5
μ: 73.9
semantic-segmentation-on-larsIntCatchAI
F1: 44.9
Q: 20.5
mIoU: 45.6
μ: 62.4
semantic-segmentation-on-larsPointRend
F1: 65.4
Q: 62.1
mIoU: 94.9
μ: 77.5
semantic-segmentation-on-larsDeepLabv3 (ResNet-101)
F1: 66.1
Q: 62.9
mIoU: 95.2
μ: 77.5
semantic-segmentation-on-larsSegmenter (ViT-B)
F1: 55.2
Q: 52.6
mIoU: 95.1
μ: 72.2
semantic-segmentation-on-larsWODIS (ResNet-101)
F1: 47.5
Q: 40.7
mIoU: 85.7
μ: 63.0
semantic-segmentation-on-larsSegFormer (MiT-B2)
F1: 70.0
Q: 67.8
mIoU: 96.8
μ: 78.6
semantic-segmentation-on-larsKNet (Swin-T)
F1: 73.4
Q: 71.3
mIoU: 97.2
μ: 78.8
semantic-segmentation-on-larsUNet
F1: 15.4
Q: 13.9
mIoU: 90.1
μ: 75.7
semantic-segmentation-on-larsDeepLabv3+ (ResNet-101)
F1: 64.0
Q: 61.0
mIoU: 95.4
μ: 77.8
semantic-segmentation-on-larsFCN (ResNet-50)
F1: 57.9
Q: 53.6
mIoU: 92.6
μ: 76.8
semantic-segmentation-on-larsWaSR (ResNet-101)
F1: 61.6
Q: 59.5
mIoU: 96.6
μ: 71.0
semantic-segmentation-on-larsFCN (ResNet-101)
F1: 63.4
Q: 60.2
mIoU: 95.0
μ: 77.4
video-semantic-segmentation-on-larsTMANet (ResNet-50)
F1: 61.1
Q: 57.5
mIoU: 94.1
μ: 77.1
video-semantic-segmentation-on-larsCSANet (ResNet-101)
F1: 52.1
Q: 49.1
mIoU: 94.2
μ: 63.7
video-semantic-segmentation-on-larsWaSR-T (ResNet-101)
F1: 62.1
Q: 60.1
mIoU: 96.7
μ: 71.1

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
LaRS: A Diverse Panoptic Maritime Obstacle Detection Dataset and Benchmark | Papers | HyperAI