HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Widely Applicable Strong Baseline for Sports Ball Detection and Tracking

Shuhei Tarashima; Muhammad Abdul Haq; Yushan Wang; Norio Tagawa

Widely Applicable Strong Baseline for Sports Ball Detection and Tracking

Abstract

In this work, we present a novel Sports Ball Detection and Tracking (SBDT) method that can be applied to various sports categories. Our approach is composed of (1) high-resolution feature extraction, (2) position-aware model training, and (3) inference considering temporal consistency, all of which are put together as a new SBDT baseline. Besides, to validate the wide-applicability of our approach, we compare our baseline with 6 state-of-the-art SBDT methods on 5 datasets from different sports categories. We achieve this by newly introducing two SBDT datasets, providing new ball annotations for two datasets, and re-implementing all the methods to ease extensive comparison. Experimental results demonstrate that our approach is substantially superior to existing methods on all the sports categories covered by the datasets. We believe our proposed method can play as a Widely Applicable Strong Baseline (WASB) of SBDT, and our datasets and codebase will promote future SBDT research. Datasets and codes are available at https://github.com/nttcom/WASB-SBDT .

Code Repositories

nttcom/wasb-sbdt
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
sports-ball-detection-and-tracking-onResTrackNetV2
Accuracy (%): 84.0
Average Precision (%): 82.2
F1 (%): 89.4
sports-ball-detection-and-tracking-onWASB (Step=3)
Accuracy (%): 87.0
Average Precision (%): 88.5
F1 (%): 91.6
sports-ball-detection-and-tracking-onDeepBall-Large
Accuracy (%): 36.8
Average Precision (%): 59.5
F1 (%): 50.6
sports-ball-detection-and-tracking-onWASB (Step=1)
Accuracy (%): 89.0
Average Precision (%): 91.6
F1 (%): 93.1
sports-ball-detection-and-tracking-on-1WASB (Step=1)
Accuracy (%): 80.0
Average Precision (%): 83.2
F1 (%): 88.0
sports-ball-detection-and-tracking-on-1WASB (Step=3)
Accuracy (%): 77.9
Average Precision (%): 79.9
F1 (%): 86.5
sports-ball-detection-and-tracking-on-1DeepBall-Large
Accuracy (%): 57.5
Average Precision (%): 56.5
F1 (%): 70.4
sports-ball-detection-and-tracking-on-1ResTrackNetV2
Accuracy (%): 74.7
Average Precision (%): 74.7
F1 (%): 84.2
sports-ball-detection-and-tracking-on-2ResTrackNetV2
Accuracy (%): 68.2
Average Precision (%): 66.0
F1 (%): 77.9
sports-ball-detection-and-tracking-on-2WASB (Step=3)
Accuracy (%): 71.3
Average Precision (%): 71.5
F1 (%): 80.6
sports-ball-detection-and-tracking-on-2DeepBall-Large
Accuracy (%): 47.5
Average Precision (%): 36.6
F1 (%): 57.2
sports-ball-detection-and-tracking-on-2WASB (Step=1)
Accuracy (%): 73.4
Average Precision (%): 77.1
F1 (%): 82.6
sports-ball-detection-and-tracking-on-sbdtWASB (Step=1)
Accuracy (% ): 97.9
Average Precision (%): 86.2
F1 (%): 88.2
sports-ball-detection-and-tracking-on-sbdtWASB (Step=3)
Accuracy (% ): 97.9
Average Precision (%): 83.6
F1 (%): 88.3
sports-ball-detection-and-tracking-on-sbdtResTrackNetV2
Accuracy (% ): 97.4
Average Precision (%): 75.5
F1 (%): 84.6
sports-ball-detection-and-tracking-on-sbdtDeepBall-Large
Accuracy (% ): 89.5
Average Precision (%): 34.0
F1 (%): 44.9
sports-ball-detection-and-tracking-on-tennisWASB (Step=1)
Accuracy (%): 91.8
Average Precision (%): 94.2
F1 (%): 95.6
sports-ball-detection-and-tracking-on-tennisWASB (Step=3)
Accuracy (%): 89.0
Average Precision (%): 91.0
F1 (%): 94.0
sports-ball-detection-and-tracking-on-tennisResTrackNetV2
Accuracy (%): 82.8
Average Precision (%): 81.7
F1 (%): 90.3
sports-ball-detection-and-tracking-on-tennisDeepBall-Large
Accuracy (%): 31.6
Average Precision (%): 35.1
F1 (%): 46.7

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Widely Applicable Strong Baseline for Sports Ball Detection and Tracking | Papers | HyperAI