HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

FENet: Focusing Enhanced Network for Lane Detection

Liman Wang Hanyang Zhong

FENet: Focusing Enhanced Network for Lane Detection

Abstract

Inspired by human driving focus, this research pioneers networks augmented with Focusing Sampling, Partial Field of View Evaluation, Enhanced FPN architecture and Directional IoU Loss - targeted innovations addressing obstacles to precise lane detection for autonomous driving. Experiments demonstrate our Focusing Sampling strategy, emphasizing vital distant details unlike uniform approaches, significantly boosts both benchmark and practical curved/distant lane recognition accuracy essential for safety. While FENetV1 achieves state-of-the-art conventional metric performance via enhancements isolating perspective-aware contexts mimicking driver vision, FENetV2 proves most reliable on the proposed Partial Field analysis. Hence we specifically recommend V2 for practical lane navigation despite fractional degradation on standard entire-image measures. Future directions include collecting on-road data and integrating complementary dual frameworks to further breakthroughs guided by human perception principles. The Code is available at https://github.com/HanyangZhong/FENet.

Code Repositories

hanyangzhong/fenet
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
lane-detection-on-culaneFENetV1
F1 score: 80.15
mF1: 56.27
lane-detection-on-culaneFENetV2
F1 score: 80.19
mF1: 56.17
lane-detection-on-llamasFENetV2
mF1: 71.85

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
FENet: Focusing Enhanced Network for Lane Detection | Papers | HyperAI