HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Compressed 3D Gaussian Splatting for Accelerated Novel View Synthesis

Simon Niedermayr Josef Stumpfegger Rüdiger Westermann

Compressed 3D Gaussian Splatting for Accelerated Novel View Synthesis

Abstract

Recently, high-fidelity scene reconstruction with an optimized 3D Gaussian splat representation has been introduced for novel view synthesis from sparse image sets. Making such representations suitable for applications like network streaming and rendering on low-power devices requires significantly reduced memory consumption as well as improved rendering efficiency. We propose a compressed 3D Gaussian splat representation that utilizes sensitivity-aware vector clustering with quantization-aware training to compress directional colors and Gaussian parameters. The learned codebooks have low bitrates and achieve a compression rate of up to $31\times$ on real-world scenes with only minimal degradation of visual quality. We demonstrate that the compressed splat representation can be efficiently rendered with hardware rasterization on lightweight GPUs at up to $4\times$ higher framerates than reported via an optimized GPU compute pipeline. Extensive experiments across multiple datasets demonstrate the robustness and rendering speed of the proposed approach.

Code Repositories

KeKsBoTer/c3dgs
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
novel-view-synthesis-on-mip-nerf-360Compressed 3D Gaussian Splatting
LPIPS: 0.238
PSNR: 26.98
SSIM: 0.80

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Compressed 3D Gaussian Splatting for Accelerated Novel View Synthesis | Papers | HyperAI