HyperAIHyperAI

Command Palette

Search for a command to run...

Effective Benchmarks for Optical Turbulence Modeling

Christopher Jellen; Charles Nelson; Cody Brownell; John Burkhardt

Abstract

Optical turbulence presents a significant challenge for communication, directed energy, and imaging systems, especially in the atmospheric boundary layer. Effective modeling of optical turbulence strength is critical for the development and deployment of these systems. The lack of standard evaluation tools, especially long-term data sets, modeling tasks, metrics, and baseline models, prevent effective comparisons between approaches and models. This reduces the ease of reproducing results and contributes to over-fitting on local micro-climates. Performance characterized using evaluation metrics provides some insight into the applicability of a model for predicting the strength of optical turbulence. However, these metrics are not sufficient for understanding the relative quality of a model. We introduce the \texttt{otbench} package, a Python package for rigorous development and evaluation of optical turbulence strength prediction models. The package provides a consistent interface for evaluating optical turbulence models on a variety of benchmark tasks and data sets. The \texttt{otbench} package includes a range of baseline models, including statistical, data-driven, and deep learning models, to provide a sense of relative model quality. \texttt{otbench} also provides support for adding new data sets, tasks, and evaluation metrics. The package is available at \url{https://github.com/cdjellen/otbench}.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Effective Benchmarks for Optical Turbulence Modeling | Papers | HyperAI